THE UNIVERSITY OF ARIZONA®

New Academic Program Workflow Form

General

Proposed Name: Ecosystem Genomics GIDP

Transaction Nbr: 0000000000098

Plan Type: Minor

Academic Career: Graduate

Degree Offered:

Do you want to offer a minor? Y

Anticipated 1st Admission Term: Fall 2021

Details

Department(s):

AGSC

DEPTMNT ID	DEPARTMENT NAME	HOST
1230	Biosystems Engineering	Ν
1232	Agricultural Education	N
1238	School of Plant Science	Ν
1239	School of Natural Resources and the Environment	N

GRDC

DEPTMNT ID	DEPARTMENT NAME	HOST
2501	Graduate Interdisciplinary Programs	Υ

SBSC

DEPTMNT ID	DEPARTMENT NAME	HOST
0481	School of Information	Ν
3008	School of Geography and Development	Ν

SCNC

DEPTMNT ID	DEPARTMENT NAME	HOST
0420	Ecology & Evolutionary Biology	Ν
0469	Hydrology and Atmospheric Sciences	Ν

Campus(es):

MAIN

LOCATION	DESCRIPTION
TUCSON	Tucson

Admission application terms for this plan: Spring: N Summer: N Fall: Y

Plan admission types:

Freshman: N Transfer: N Readmit: N Graduate: Y

Non Degree Certificate (UCRT only): Y

Other (For Community Campus specifics): N

Plan Taxonomy: 26.1201, Biotechnology.

Program Length Type: Program Length Value: 0.00

Report as NSC Program:

SULA Special Program:

Print Option:

Diploma: Y Ecosystem Genomics Graduate Interdisciplinary Program PhD Minor

Transcript: Y Ecosystem Genomics Graduate Interdisciplinary Program PhD Minor

Conditions for Admission/Declaration for this Major:

We welcome active doctoral students who are enrolled full time at the University of Arizona, with background and training in ecology, evolutionary biology, entomology, plant sciences, biosystems engineering, hydrology, atmospheric science, environmental science, and/or natural resource management. While students from diverse programs will be considered, we anticipate that students generally will be enrolled in a graduate program aligned conceptually with ecosystem genomics (e.g., but not limited to, Ecology and Evolutionary Biology (EEB), Entomology and Insect Sciences (EIS), School of Plant Sciences (SPLS), Biosystems Engineering (BE), Hydrology and Atmospheric Sciences (HAS), Environmental Sciences (ENVS), School of Natural Resources and the Environment (SNRE), School of Information (INFO), and School of Geography, Development, and Environment (GEOG). Students who previously completed the Graduate Certificate in Ecosystem Genomics are not eligible to earn the minor.

Requirements for Accreditation:

We will not seek accreditation.

Program Comparisons

University Appropriateness

The proposed Ecosystem Genomics GIDP fits under two pillars of the University of Arizona's strategic plan: Grand Challenges 2.2A--Preeminence in environmental research and education, by striving to "excel in research on the natural and built environment..."; and Arizona Advantage 3.1A--Strengthen commitment to equity and support of diverse communities by "creat[ing] engaging and empowered campus environments that inspire creativity, enhance our ability to think critically, and challenge us to approach some of societys most complex problems without hesitation, and enriched by diverse perspectives... leading the way toward a society that taps into the talents, wisdom, and strengths that all individuals and communities possess to solve our greatest problems."

The GIDP Co-Chairs, participating faculty, and University leaders such as Dean Carnie and Dr. Folks have a shared commitment to fostering the long-term sustainability and growth of ecosystem genomics as an emerging critical science at University of Arizona, with attention to continued recruitment of faculty; supporting research, teaching, curriculum development, outreach, and mentorship through the ecosystem genomics initiative; and enhancing and formalizing graduate student training through the proposed GIDP.

The University of Arizona is the most appropriate location within the Arizona University System for this GIDP because of our sustained and growing excellence in Ecosystem Genomics, as reflected in our Ecosystem Genomics Initiative, the highly successful Ecosystem Genomics cluster hire, and the thriving focus on ecosystem genomics that connects multiple colleges and units on campus in a new, emergent, convergent science. Moreover, the University of Arizona, as Arizona's land-grant institution, is uniquely positioned to serve stakeholders statewide and regionally with problem-solving that, by working across scales from genomics to ecosystems, can solve grant challenges in human sustainability. Finally, as a Hispanic Serving Institution the University of Arizona has the opportunity to increase the recruitment, inclusion, retention, and visibility of diverse students in graduate programs in STEM. This GIDP aims to enhance graduate recruitment to partner programs with an infusion of support from the National Science Foundation Research Trainee grant (BRIDGES), which supports the initiation and first strategic phase of this GIDP.

Arizona University System

NBR	PROGRAM	DEGREE	#STDNTS	LOCATION	ACCRDT
1	Ecol. &	PHD	11	NAU (Main-Flagstaff	Ν
	Environ.			Mountain)	
	Informatics				

Peer Comparison

The proposed program is globally unique and complements existing programs in the integrative life sciences by centering on a newly emergent and convergent scientific field, the interdisciplinary science of ecosystem genomics. While many programs exist with major/minor emphases in genomics, ecosystem science, and related disciplines, we did not identify any existing minor (or major) program that focuses on integrating from genes to ecosystems in a manner that reaches from molecules to landscapes, from soils to the atmosphere, from microbes to plants and insects, and from wild lands to agriculture. The closest matches are presented in the comparison table: the T3 option in the INF (Informatics) PhD program at Northern Arizona University; and the Environmental Life Sciences PhD at Arizona State University. Both are oriented toward sustainability and addressing grand challenges in sustainability, the former through informatics and the latter through traditional environmental science. Both are outstanding and successful programs that differ from, and are complementary to, the proposed UArizona GIDP PhD Minor in Ecosystem Genomics: the proposed GIDP brings students in diverse areas together on a convergent training program in an emergent field of ecosystem genomics, rather than drawing only from informatics students or only from students studying environmental science: our partner programs on campus include EEB, BE, EIS, SNRE, HAS, SPLS, ENVS, GEOG, and INFO. The proposed GIDP has a novel core course that spans the emergent discipline and is distinct in its dual foci in ecosystem sciences and genomics. The role of informatics for the proposed GIDP is to advance the synthesis of ecosystem sciences and genomic sciences, advancing the emergent discipline as a tool rather than a focus. Coupled with our outstanding faculty hires in Ecosystem Genomics, our active faculty research programs, and our initial funding through the National Science Foundation, the GIDP in Ecosystem Genomics is conceptualized as a novel and innovative program that will fill an open niche at the leading edge of interdisciplinary science.

Faculty & Resources

Faculty

INSTR ID	NAME	DEPT	RANK	DEGREE	FCLTY/%
01868877	Luciano	1235	Assoc. Prof	Doctor of	.05
	Matzkin			Philosophy	
01875717	Jana Uren	1230	Assit. Prof	Doctor of	.01
				Philosophy	
02565087	Bonnie	1230	Assoc. Prof	Doctor of	.05
	Hurwitz			Philosophy	
06902489	Andrew	3008	Professor	Doctor of	.01
	Comrie			Philosophy	
08609517	Jennifer	0433	Assoc. Prof	Doctor of	.01
	Croissant			Philosophy	
11403676	Anne Arnold	1238	Professor	Doctor of	.05

Current Faculty:

INSTR ID	NAME	DEPT	RANK	DEGREE	FCLTY/%
				Philosophy	
13205326	Rod Wing	1238	Professor	Doctor of Philosophy	.01
13509167	Erin Leahey	0418	Professor	Doctor of Philosophy	.01
14903023	Scott Saleska	0420	Professor	Doctor of Philosophy	.05
22052456	Katrina Dlugosch	0420	Assoc. Prof	Doctor of Philosophy	.01
22052954	Rachel Gallery	1239	Assoc. Prof	Doctor of Philosophy	.01
22067228	Laura Meredith	1239	Assit. Prof	Doctor of Philosophy	.05
22074294	Albert Barberan	1240	Assit. Prof	Doctor of Philosophy	.01
22075561	William Pauli	1238	Assit. Prof	Doctor of Philosophy	.01
22080295	Malak Tfaily	1240	Assit. Prof	Doctor of Philosophy	.01
22085060	Winslow Burleson	0481	Professor	Doctor of Philosophy	.01
22086244	Yang Song	0469	Assit. Prof	Doctor of Philosophy	.01

Additional Faculty:

No additional faculty needed.

Current Student & Faculty FTE

DEPARTMENT	UGRD HEAD COUNT	GRAD HEAD COUNT	FACULTY FTE
2501	0	24	.37

Projected Student & Faculty FTE

	UGRD H	IEAD COL	JNT	GRAD H	EAD COL	JNT	FACULT	Y FTE	
DEPT	YR 1	YR 2	YR 3	YR 1	YR 2	YR 3	YR 1	YR 2	YR 3
2501	0	0	0	8	16	24	.37	.37	.37

Library

Acquisitions Needed:

None.

Physical Facilities & Equipment

Existing Physical Facilities:

The GIDP will use existing physical facilities already in use by our partner

graduate programs. Dr. Jennifer Barton, Director of The BIO5 Institute has agreed to provide office space for the Program Coordinator. No special facilities are required.

Additional Facilities Required & Anticipated:

None.

Other Support

Other Support Currently Available:

Directors/Coordinators/Chairs of Graduate Studies in partner programs have agreed to assist in student recruitment to the GIDP minor. Funds from the National Science Foundation, College of Science, and College of Agriculture and Life Sciences will support the Program Coordinator for the first five years of the GIDP, with plans currently underway to seek private, donor, and institutional support thereafter. Funding for personnel for the GIDP will be non-Graduate College/GIDP resources.

The BIO5 Institute will provide support the Ecosystem Genomics Seminar Series to bring 2-3 domestic and international speakers per year to UA for the first five years of the GIDP. The Co-Chairs of the GIDP are tenured faculty members contributing their leadership as service aligned with the University of Arizona's strategic aims.

Other Support Needed over the Next Three Years:

None.

Comments During Approval Process

12/2/2021 2:21 PM

BCOLOMBI	
Comments	
Approved.	

NEW ACADEMIC PROGRAM- STANDALONE GRADUATE MINOR ADDITIONAL INFORMATION FORM

1. **MINOR DESCRIPTION** - provide a marketing/promotional description for the proposed minor. Include the purpose, nature, and highlights of the curriculum, faculty expertise, etc. The description should match departmental and college websites, handouts, promotional materials, etc.

The Ecosystem Genomics Graduate Interdisciplinary Program (GIDP) PhD Minor will support and train diverse, outstanding doctoral students in ecosystem genomics, an emergent discipline that integrates across biotic systems from genes to ecosystems to solve grand challenges in sustainability and innovation in a rapidly changing world. As an innovative, interdisciplinary area of study, ecosystem genomics represents the synthesis of ecosystem- and genomic sciences via the tools of computational biology, modeling, data science, experiments, theory, applications, and the approaches and power of 'big data' in a collaborative and convergent framework.

The **ultimate aim** of the Ecosystem Genomics GIDP is to foster a new generation of diverse transdisciplinary scientists to address the challenges of sustaining natural and managed ecosystems on which humans depend, including wildlands, agricultural systems, forests, arid lands, and marine environments. The coursework supported by this minor will help students think across scales from 'genes to ecosystems' as they develop skills in interdisciplinarity, scientific communication, and collaboration. At is core the minor will foster and extend students' excellence in areas such as data science, microbiology, plant sciences, insect science, environmental science, atmospheric science, biosystems engineering, ecology and evolutionary biology, geography and information science, and it is intended to attract students majoring in these UArizona programs. Ultimately the minor will help students translate ideas into meaningful scientific advances while cultivating deep and broad skill sets and promises to prepare students for important roles in solving grand challenges relevant to regional, national, and international issues in sustainability and innovation.

II. **NEED FOR THE MINOR/JUSTIFICATION** - provide market analysis data or other tangible evidence of the need for and interest in the proposed minor. This might include results from surveys of current students, alumni, and/or employers or reference to student enrollments in similar programs in the state or region. Curricular Affairs can provide a job posting/demand report by skills obtained/outcomes of the proposed minor. Please contact the <u>Office of Curricular Affairs</u> to request the report for your proposal.

Ecosystem genomics is both a new scientific discipline and a nexus for coalescing UArizona's existing and emergent strengths in environmental science, microbial ecology, plant science, insect science, hydrology and atmospheric science, biosystems engineering, natural resources, ecology, evolutionary biology, genome-enabled science, and "big data" cyberinfrastructure to address the grand challenge of scaling biological information from genes to ecosystems. This GIDP is motivated by a group of faculty with shared and resonant interests who already have come together as collaborators, co-mentors, and instructors to fill a clear need in the job market, from industry to academia to government and non-governmental organizations. As evidenced by our letters of support from industry, as but one example of the excitement among prospective employers, there is considerable enthusiasm for the program.

This minor will simultaneously advance theory and practical solutions to problems ranging from global climate change to human health. As a science, ecosystem genomics integrates the theory and tools of *ecosystem ecology* with *meta-omics* approaches to open a new window on mechanisms that regulate scaling of micro- to macro-scale processes in natural and human-built environments. This minor seeks to advance predictive understandings of how biological information networks regulate natural and human ecosystem responses to change.

The University of Arizona already has supported the development of the Ecosystem Genomics focus area through a faculty cluster hire that resulted in 6 new faculty at the Assistant/Associate Professor level in 5 departments. The foundation for the cluster hire in Ecosystem Genomics emerged from the iBiosphere Working Group that was convened in 2012 at the request of then-Associate VPR Andrew Comrie, and Deans Shane Burgess (CALS) and Joaquin Ruiz (COS). In creating the iBiosphere concept, a group of nine faculty members from six colleges developed a strategic plan for enhancing interfaces among the natural sciences, information sciences and social sciences, with a primary nexus being 'big-data' and 'big-computing'.

Since then, the team of faculty has grown to 15 faculty in nine units. This effort resulted in a successful 5year NSF Research Training (NRT) grant in Ecosystem Genomics that started in Fall 2020. During the first recruitment cycle more than 45 incoming students applied, suggesting interest and sustainability for a long-term program in this area. Moreover, employers such as Bayer Crop Sciences and Indigo Agriculture have expressed their support for graduate training in Ecosystem Genomics, indicating opportunities for future jobs for students from our program. We anticipate that the training provided by the minor will expand and complement the expertise gained by doctoral students in majors in partner programs (EEB, EIS, BE, SPLS, ENVS, HAS, SNRE, GEOG, INFO) and foster additional hard- and soft-skill training that will propel them as they move on to careers in academia, governmental agencies, non-profits, industry, agriculture, data science, and more.

III. MINOR REQUIREMENTS - complete the table below to list the minor requirements, including minimum number of credit hours, required core, electives, and any special requirements. Note: information in this section must be consistent throughout the proposal documents (comparison charts, curricular/assessment map, etc.).

Total transfer units that may apply to minor	Three (3), but these may not replace the Ecosystem Genomics Seminar
Pre-admissions expectations (i.e., academic training to be completed prior to admission)	 We welcome active doctoral students who are enrolled full time at the University of Arizona, with background and training in ecology, evolutionary biology, entomology, plant sciences, biosystems engineering, hydrology, atmospheric science, environmental science, and/or natural resource management. While students from diverse programs will be considered, we anticipate that students generally will be enrolled in a graduate program aligned conceptually with ecosystem genomics (e.g., but not limited to, Ecology and Evolutionary Biology (EEB), Entomology and Insect Sciences (EIS), School of Plant Sciences (SPLS), Biosystems Engineering (BE), Hydrology and Atmospheric Sciences (HAS), Environmental Sciences (ENVS), School of Natural Resources and the Environment (SNRE), School of Information (INFO), and School of Geography, Development, and Environment (GEOG). To apply, an interested student should contact the Program Coordinator or co-chairs. There are no additional GPA requirements beyond a 3.0.
Minor requirements. List all minor requirements including core and electives. Courses listed must include course prefix, number, units, and title. Mark new coursework (New). Include any limits/restrictions needed (house number limit, etc.). Provide email(s)/letter(s) of support from home department head(s) for courses not owned by your department.	All courses already exist and are taught regularly in person on the UArizona main campus. We have reached out to instructors and unit/department heads to confirm that the GIDP minor would not create enrollment challenges. Letters of support are included. 11 units required (3 core + 8 or more elective units) Complete 3 units of core coursework: -RNR 696A (2) Ecosystems Genomics Seminar, fall -EIS 596A (1) Ecosystem Genomics Seminar, spring

	 Complete 3 courses, choosing at least <u>one</u> course from each of three of the following four areas (to be chosen in conjunction with major and minor advisor/doctoral advising committee) for a minimum of 8 units. All courses already exist and are taught regularly in person on the UArizona main campus. We have reached out to instructors and unit/department heads to confirm that the graduate certificate would not create enrollment challenges. Letters of support are included. 11 units required (3 core + 8 or more elective units)
	 Communication & Dissemination ENVS 508 (3) Scientific Writing for Env., Ag., & Life Sciences ENVS 515 (3) Translating Environmental Science WSM/GEOS 595E (currently 1, will become 3 after fall 2021) Scientific Writing (Topics in Dendrochronology) INFO 520 (3) Ethical Issues in Information INFO 536 (3) Data Science and Public Interests
	 2. Theory & Concepts: Ecosystem & Earth Science -ENVS 511 (3) Environmental Metabolomics -ENVS510 (3) Microbial Biogeochemistry and Global Change -RNR 558 (3) Ecosystem Ecology and a Sustainable Future -ENVS 525 (3) Environmental Microbiology -ECOL 578 (3) Global Change -ATMO 536A (3) Fundamentals of Atmospheric Sciences -GC 530 (3) The Climate System -GC 597A (3) Global Change Research, Application, and Decision Making
	 3. Theory & Concepts: Genomic Biology -ECOL 553 (4) Functional and Evolutionary Genomics -ECOL 596A (1) Evolutionary Ecology -ECOL 600A (3) Fundamentals of Evolution -ECOL 565 (3) Phylogenetic Biology -EIS 544 (3) Insect Ecology -PLP 550 (4) Principles of Plant Microbiology
	 4. <i>Tools & Data: Data Analytics</i> -BE 534 (3) Biosystem Analytics -BE 587 (3) Metagenomics: From Genes to Ecosystems -ECOL 580 (3) Mathematical Models in Biology -ENVS 567 (3) Introductory Statistics & Multivariate Statistics with R (undergoing course name change to Statistical analysis of ecological and environmental data with R) -INFO 533 (3) Medical On-Line Searching -INFO 544 (3) Informatics in Biology -INFO 597 (1-6) Biodiversity Informatics
Research methods, data analysis, and methodology requirements (Yes/No). If yes, provide description.	Yes, integrated into the required Ecosystem Genomics seminar and delivered through training for their majors.
Internship, practicum, applied course requirements (Yes/No). If yes, provide description.	No
Additional requirements (provide description)	No

IV. CURRENT COURSES - using the table below, list all existing courses included in the proposed minor. You can find information to complete the table using the <u>UA course catalog</u> or <u>UAnalytics</u> (Catalog and Schedule Dashboard> "Printable Course Descriptions by Department" On Demand Report; right side of screen). If the courses listed belong to a department that is not a signed party to this implementation request, upload the department head's permission to include the courses in the proposed minor and information regarding accessibility to and frequency of offerings for the course(s). Upload letters of support/emails from department heads to the "Letter(s) of Support" field on the UAccess workflow form. Add rows to the table, as needed.

Course prefix and number (include cross- listings)	Units	Title	Course Description	Pre-requisites	Modes of delivery (online, in- person, hybrid)	Typically offered (F, W, Sp, Su)	Dept. signed party to proposal?
ATMO 536A	3	Fundamentals of Atmospheric Sciences	Broadly covers fundamental topics in the atmospheric sciences. Topics include composition of the atmosphere, atmospheric thermodynamics, atmospheric chemistry, cloud physics, radiative transfer, atmospheric dynamics, and climate. Graduate-level requirements include additional questions on homework and exams plus a term paper on a specialized research topic.	none listed	in person	Sp	Yes
BE 534	3	Biosystem Analytics	This course provides a comprehensive introduction to Python for data analytics focused on the interpretation of biological data. The course is structured as a series of short lectures covering key concepts and analytical strategies using Python and cutting-edge open source packages for data analytics. The majority of the course focuses on hands-on exercises both in- and out- of class to develop practical coding skills for interpreting and analyzing high-dimensional biological data. Students work in a collaborative learning classroom to gain skills in (1) basic Unix and Python, (2) Python data structures functions, and files, and (3) data wrangling and visualization using IPython, NumPy, and pandas, and (4) analytics using machine-learning methods available in Scikit-Learn.	Online introduction to Linux. Code academy's Intro to Unix or Command line bootcamp. Apple or Linux computer or Windows machine with Putty. An introductory programming class in python is useful but not required.	in person	F	Yes

	1		leen in a said	[1
			These skills are taught by				
			implementing real-world				
			coding examples to				
			manipulate and process				
			biological data in Python,				
			and effectively use data-				
			oriented Python libraries to				
			analyze and interpret data				
DE 507	0		from biological systems.	P ()		E () (X
BE 587	3	Metagenomics:	Environmental genomics is	none listed	in person	F (not in	Yes
		From Genes to	revolutionizing our			Fall	
		Ecosystems	understanding of microbes			2021,	
			from the environment to			offered	
			human health, towards a			Spring	
			holistic view of ecosystems			2022)	
			or "One-Health". At its core are new molecular methods				
			called metagenomics to				
			sequence DNA directly from an environmental				
			sample, thus capturing the				
			whole microbial community				
			and bypassing culture.				
			Modern (Next-Gen)				
			sequencing technologies				
			offer vast new datasets of				
			short sequence reads				
			representing these				
			microbial communities,				
			however many hurdles				
			exist in interpreting data				
			with high species				
			complexity and given				
			specialized software for				
			microbial metagenomic				
			analyses. This course				
			focuses on the science of				
			metagenomics towards				
			understanding (1)				
			questions that				
			metagenomics can				
			address, (2) possible				
			approaches for				
			metagenomic sequencing				
			and analysis, and (3) how				
			genes, pathways, and				
			environmental context are				
			translated into ecosystem-				
			level knowledge. This				
			course alternates between				
			traditional lectures and				
			hands-on experience with				
			programming,				
			bioinformatics tools, and				
			metagenomic analysis. The				
			course concludes with				
			several weeks of seminar-				
			format discussions on				
			current research in				
			metagenomic data analysis				
			and a final project of your				
			choice analyzing real-world experimental data.				
ECOL	3	Global Change	Analysis of the Earth	none listed	in poreco	F	Yes
578	5	Giobal Change	system through an		in person		165
5/0			examination of its				
1				1			

1	1	1	1			1	
			component parts				
			(particularly climate and				
			biogeochemistry) and their				
			interactions with human				
			activities, emphasizing				
			information needed to				
			understand modern and				
			future environmental				
			changes. Graduate-level				
			requirements include an in-				
			depth written exercise and				
			additional activities as				
			described in the syllabus.				
ECOL	4	Functional and	Computational, functional,	Concurrent	in person	F	Yes
553		Evolutionary	and evolutionary	registration,	•		
		Genomics	approaches to genomics,	ECOL 553L			
			including bioinformatics and	for 1 st yr.			
			laboratory methods	IGERT			
			relevant to many modern	fellows. While			
			research approaches in				
			biology. Graduate-level	stated in the			
			requirements include	catalog, this			
			students completing	requisite no			
			independently designed lab	longer			
			exercises and relate these	applies.			
			to the primary literature in a				
			paper. Undergraduate				
			students will only complete				
ECOL	3	Fundamentals	defined lab exercises. The fundamentals of	Graduate	in norsen	<u>Sn</u>	Yes
	3			-	in person	Sp	res
600A		of Evolution	modern Evolutionary	status in EEB			
			Biology, including	or related			
			molecular evolution,	department.			
			phylogenetics,				
			macroevolution, and				
			population/quantitative				
			genetics. Graduate-level				
			review of evolution focusing				
			on (i) phenotypic evolution				
			of complex traits, and (ii)				
	-		molecular evolution.				
ECOL	3	Phylogenetic	Concepts in phylogenetic	none listed	in person	Sp, even	Yes
565		Biology	biology, focusing on the			years	
			phylogenetic (evolutionary)				
			tree of species. The form of				
			the tree, character				
	1		evolution, speciation, and				
1						1	
			gene trees. Graduate-level				
			requirements include a				
			requirements include a more in-depth term paper.				
ECOL	3	Mathematical	requirements include a more in-depth term paper. For advanced	MATH 129	in person	Sp	Yes
ECOL 580	3	Mathematical Models in	requirements include a more in-depth term paper.	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced	MATH 129	in person	Sp	Yes
	3		requirements include a more in-depth term paper. For advanced undergraduates and	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from simple back-of-the-	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from simple back-of-the- envelope estimates to	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from simple back-of-the- envelope estimates to formal stability analysis	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from simple back-of-the- envelope estimates to formal stability analysis using difference and	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from simple back-of-the- envelope estimates to formal stability analysis using difference and differential equations) to	MATH 129	in person	Sp	Yes
	3	Models in	requirements include a more in-depth term paper. For advanced undergraduates and graduate students in biological and ecological sciences, and math students: learn how to apply basic tools of mathematical tools (from simple back-of-the- envelope estimates to formal stability analysis using difference and	MATH 129	in person	Sp	Yes

			dynamics, species				
			coexistence, population				
			genetics, links between				
			ecosystems ecology and				
			Global biogeochemistry,				
			and biological scaling.				
ECOL	2	Evolutionary	This seminar-style	none listed	in person	F, even	Yes
596A		Ecology	graduate-level course will			years	
			explore standing questions				
			at the interface of ecology				
			and evolution, with an				
			emphasis on how				
			evolutionary processes affect the ecology that we				
			observe in natural				
			populations. Underlying				
			concepts will be reviewed				
			briefly in lectures by the				
			instructor, but the majority				
			of class time will be spent				
			discussing current literature				
			and major questions in the				
EIS 544	3	Insect Ecology	field. The study of how variation	none listed	in person	F, odd	Yes
210 044	5	mocor Loology	in the environment.			years	103
			interactions with other			Jeano	
			species and the special				
			features of insect "design,"				
			have determined the				
			evolution of diverse insect				
			life histories, the dynamics of insect population and the				
			roles of insects in				
			communities.				
ENVS	3	Scientific	Effective writing is a	none listed	in person	Sp	Yes
508		Writing for Env.,	valuable tool for any				
		Ag., & Life	student aspiring for a				
		Sciences	career in the				
			Environmental, Agricultural, and Life Sciences. This				
			course will cover in-depth				
			technical writing skills				
			needed for scientific writing				
			success, ranging from how				
			to perform comprehensive				
			reviews of the scientific				
			literature, to performing				
			peer reviews of the writing				
			of fellow students.				
			Ultimately, completion of this course will improve				
			students' ability to write				
			technical reports, theses				
			and dissertations, and				
			journal articles. Graduate-				
			level requirements include				
			work on theses,				
			dissertations or journal				
ENVS	3	Translating	articles. Scientists speak a different	none listed	in poreen	Sn	Yes
ENVS 515	3	Translating Environmental	language, a dialect filled	none iisteu	in person	Sp	165
515			ianguago, a dialoot illiou	1		1	
			with abstract symbolism				
		Science	with abstract symbolism, hypotheses and references				

						1	i
			journalism techniques to				
			translate environmental science topics into				
			language a layperson could				
			appreciate. The writing				
			concepts will apply to any				
			field of science, as well as				
			grant proposals, public				
			reports and media including				
			web-based publishing.				
			Students also learn				
			techniques for converting				
			numbers into relevant				
			statistics. Students will				
			"workshop" in groups and				
			work closely with the				
			instructor to produce publication-quality articles				
			on assigned or agreed-				
			upon topics. The best of				
			these could be posted on				
			university-affiliated				
			websites, with credit given				
			to the author. Graduate-				
			level requirements include				
			an additional final project				
			writing a grant proposal or				
			writing a feature article for a				
			specified magazine or				
			newspaper worth 50 points				
			and a higher level of				
			expectation regarding				
			writing and reviews of their peers' work.				
ENVS	3	Environmental	This is a 3 credit hours	CHEM	in person	Sp	Yes
511	-	Metabolomics	course aimed to provide an	142/144 or			
• • •			introduction to	CHEM 152 or			
			metabolomics, describes	CHEM			
			the tools and techniques	162/164 and			
			we use to study the	MCB 181R;			
			metabolome and explains	or equivalent			
			why we want to study it.	or instructor			
				consent			
ENVS	3	Microbial	Microbes are the drivers of	Background in	in person	F	Yes
510	Ĩ	Biogeochemistr	planetary biogeochemistry.	biology or		·	
		y and Global	They produce half the	biogeo-			
		Change	oxygen on the planet, and	chemistry, and			
			fix half the carbon. They	openness to			
			introduce bioavailable	inter-			
			forms of nitrogen into the	disciplinary			
			biosphere. If human life	learning.			
			ceased to exist, the central				
			biogeochemical cycles				
			would continue turning.				
			However, while the planet's biogeochemistry can				
			persist readily in the				
			absence of human life, that				
			does not mean that				
			humankind's presence				
			lacks impact. The				
			Anthropocene (era of				
			human impact) has seen				
			significant changes to				
	1	1	planetary stocks and fluxes	1	1	1	

	1	1		r	r	1	
			of C, N, S, etc. Many of				
			these changes involve or				
			impact microbes, and have				
			significant impacts on				
			biogeochemical cycles. To				
			understand microbial				
			biogeochemistry in today's				
			world, one must include the				
			context of global change.				
			And, conversely, one				
			cannot understand the				
			trajectory of global change				
			without understanding				
			microbial feedbacks via				
			biogeochemical cycles. In				
			this interdisciplinary				
			undergraduate and				
			graduate class we will				
			cover major microbial				
			biogeochemical cycles, and				
			how these cycles are				
			impacted by, and feedback				
			to, global change. To				
			understand the research in				
			this area, we will discuss				
			current methods in both				
			microbial ecology and				
			biogeochemistry, ranging				
			from molecular meta-omics				
			to the use of isotopes as				
			biogeochemical tracers,				
			with a particular emphasis				
			on the challenges and				
			opportunities of integrating				
			these two disciplines.				
			Lectures will be mixed with				
			journal club-style readings				
			and discussions, so active				
			participation is essential.				
			This course is designed for				
			graduate students from				
			diverse backgrounds and				
			advanced undergraduates.				
ENVS	3	Environmental	Current concepts in water	none listed	online	F	Yes
525	-	Microbiology	quality, aerobiology and			·	
		morosology	microbial biogeochemistry.				
			Graduate-level				
			requirements include extra				
			journal readings and more				
			comprehensive exams.				
	2	Introductor			in norser	Sn	Vaa
ENVS	3	Introductory	The course (3-unit class)	ENVS 275 or	in person	Sp	Yes
567		Statistics &	will teach the fundamentals	MATH 263,			
		Multivariate	of coding and programming	an			
		Statistics with R	using the R language	introductory			
			(https://www.r-project.org/).	college-level,			
			The students will use code	statistics			
			examples and practice	course, or			
1	1		problems to understand the	instructor			
			statistical as well as the	consent			
			statistical as well as the scientific viewpoint. Using	consent			
				consent			
			scientific viewpoint. Using	consent			
			scientific viewpoint. Using R, students will explore and visualize real-world data	consent			
			scientific viewpoint. Using R, students will explore and visualize real-world data and derive meaningful	consent			
			scientific viewpoint. Using R, students will explore and visualize real-world data and derive meaningful interpretations. The course	consent			
			scientific viewpoint. Using R, students will explore and visualize real-world data and derive meaningful	consent			

	1		statistics hypothesis		1		
			statistics, hypothesis testing, t-test, ANOVA, correlation, regression) and multivariate statistics with a focus on ecological analyses (diversity, cluster analysis, unconstrained				
			ordination, constrained ordination).				
GC 530	3	The Climate System	Systematic examination of processes and circulations comprising Earth's climate. Emphasis on circulations influencing geographic processes using examples of atmospheric environmental issues. Graduate-level requirements include the completion of a term paper.	none listed	in person	Sp	Yes
GC 597A	3	Global Change Research, Application, and Decision-Making	Integrative experience for natural and social science students with focus on local and regional consequences of global change.	none listed	online	Sp, every other year	Yes
INFO 520	3	Ethical Issues in Information	This course presents an overview and understanding of the intractable and pressing ethical issues as well as related policies in the information fields. Emerging technological developments in relation to public interests and individual well-being are highlighted throughout the course. Special emphasis is placed on case studies and outcomes as well as frameworks for ethical decision-making.	none listed	in person		Yes
INFO 533	3	Medical On-Line Searching	This course will focus on the online retrieval and evaluation of medical literature and the issues surrounding provision of timely, relevant, peer- reviewed medical information. Emphasis will be on the development of the intellectual acuity required to provide physicians, nurses, pharmacists, allied health professionals, medical researchers and consumers with targeted responses to medical queries. Current search modalities such as Evidence-Based Medicine will be covered both in readings and in class discussions.	none listed	in person	Sp	Yes

	2	Data Science	This course feetback on the	none listed	in noraci	Е	Vac
INFO 536	3	Data Science and Public Interests	This course focuses on the use of modern data science methods to help learners make socially responsible decisions and mitigate harm that arises from issues like bias, discrimination, and threats to one's personal privacy. More and more individuals are needing to make data- driven decisions in a wide variety of contexts including non-governmental organizations, not-for-profit industries, human services, environmental organizations, refugee camps, and more. Students in this class will thus learn about data science and how it can be utilized in contexts where socially- good decisions are desired and emphasized. This active learning class is designed for students who have an interest in the topic but who may have little to no previous experience with data science or programming.	none listed	in person	F	Yes
INFO 544	3	Informatics in Biology	Analyze genomic sequences through understanding and using a variety of bioinformatics algorithms and software tools. Interdisciplinary approach integrating informatics, statistics, and biology. Graduate-level requirements include leading a discussion on a current paper or give a tutorial on a bioinformatics tool as part of the Major Concept Exercises category.	none listed	in person	F	Yes
INFO 597	1-6	Biodiversity Informatics	Modern science has always been data driven but advances in data gathering tools from ground sensors to aerial-based remote sensing increase the researchers' opportunities and responsibility for the professional management of data to support the reproducibility and validity of science. In this course, biology, engineering, and information science	none listed	in person	Su	Yes

			students will learn to design and implement research methodologies for field research that effectively combine 1) the discovery and use of existing data with 2) the collection, organization, analysis, dissemination, and preservation of field generated research data. These research methodologies will be implemented/studied within the motivating context of behavioral wildlife observation research. Working in teams, students will build, program and deploy microcontroller- based field sensors to gather animal behavioral information in challenging field conditions. Students will use tools such as R and Jupyter Notebooks to add metadata, document data				
			for publication and deposit the data in a trusted data repository.				
PLP 550	4	Principles of Plant Microbiology	This course deals with the mechanisms that plants and associated microorganisms use to establish detrimental or beneficial relationships from the molecular level to the population level. Classical and contemporary research are used extensively to evaluate contemporary and emerging theories.	PLP 305 or consent of instructor	in person	Sp, odd years	Yes
RNR 558	3	Ecosystem Ecology and a Sustainable Future	Rapid changes to Earth's biosphere will influence how natural and managed ecosystems function and alter the services they provide. Issues from conservation biology to sustainability and global climate change rely on a comprehensive understanding of ecosystem processes. In this class, students will learn the principles of terrestrial ecosystem ecology, examining the influence of biological, ecological, and physical processes on energy and material flows and water and elemental (carbon, nitrogen, phosphorous) cycling in ecosystems.	none listed	in person	Sp	Yes

RNR 621	3	Applied Statistics	Graduate level requirements include an additional project and leading class discussions. Statistical methods relevant to the applied sciences, with emphasis on applications in ecology and biology. Fundamentals of inference, estimation, hypothesis testing, and model selection, with a	An introductory statistics course such as MATH 263 or equivalent	in person	F	Yes
RNR 696A	2	Ecosystem Genomics	focus on linear models. The development and exchange of scholarly information, in a small group setting, on selected topics in Natural Resources science and management. Course registrants exchange results of research through discussions, reports, and/or papers.	none listed	in person	F	Yes
TBD	1	"Ecosystem Genomics"	This is a companion course to RNR 696A. Students will practice the outcomes introduced in the fall course.	RNR696A	in person	Sp	Yes
WSM 595E	1 (3 in and after F'21)	Scientific Writing (Topics in Dendro- chronology)	The exchange of scholarly information and/or secondary research, usually in a small group setting. Instruction often includes lectures by several different persons. Research projects may or may not be required of course registrants.	none listed	in person	F	Yes

V. NEW COURSES NEEDED - using the table below, list any new courses that must be created for the proposed program. If the specific course number is undetermined, please provide level (i.e., CHEM 6**). Add rows as needed. Is a new prefix needed? If so, provide the subject description so Curricular Affairs can generate proposed prefix options.

No new courses are required. We expect that our spring companion course to RNR 696A will use an existing prefix and course number.

VI. FACULTY INFORMATION - complete the table below. If UA Vitae link is not provided/available, attach a short CV (2-3 pages) to the end of the proposal or upload to the workflow form. UA Vitae profiles can be found in the <u>UA directory/phonebook</u>. Add rows as needed. **NOTE: full proposals are** distributed campus-wide, posted on committee agendas and should be considered "publicly visible". Contact the <u>Office of Curricular Affairs</u> you have concerns about CV information being "publicly visible".

Faculty Member	Involvement	UA Vitae link or "CV attached"
A. Elizabeth	Teach PLP 550, Faculty advisor,	https://profiles.arizona.edu/person/fungi
Arnold (Betsy)	Instructor; Co-chair, GIDP	

Bonnie Hurwitz	Teach BE 534, BE 587 (Co-taught),	https://profiles.arizona.edu/person/bhurwitz
	Faculty advisor, Instructor; Co-Chair ,	
	GIDP	
Laura Meredith	Teach RNR 696A-F (Req), RNR 558,	https://profiles.arizona.edu/person/laurameredith
	Faculty advisor, Instructor	
Scott Saleska	Teach ECOL 580, ECOL 578 (Co-taught),	https://profiles.arizona.edu/person/saleska
	Faculty advisor, Instructor	
Jana U'Ren	Teach BE 587 (Co-taught), Faculty	https://profiles.arizona.edu/person/juren
	advisor, Instructor	
Malak Tfaily	Teach ENVS 510, ENVS 511, Faculty	https://profiles.arizona.edu/person/tfaily
	advisor, Instructor	
Albert Barberán	Teach ENVS 567, Faculty advisor,	https://profiles.arizona.edu/person/barberan
	Instructor	
Luciano Matzkin	Teach EIS 596A-Sp (Req: spring	https://profiles.arizona.edu/person/Imatzkin
	Ecosystem Genomics seminar), ECOL	
	553 (Co-taught), Faculty advisor,	
	Instructor	
Katrina Dlugosch	Teach ECOL 596A, Faculty advisor,	https://profiles.arizona.edu/person/kdlugosch
	Instructor	
Rachel Gallery	Faculty Advisor, Instructor	https://profiles.arizona.edu/person/rgallery
Regis Ferriere	Faculty Advisor, Instructor	https://profiles.arizona.edu/person/regisf
Rod Wing	Faculty Advisor, Instructor	https://profiles.arizona.edu/person/rwing
W. Duke Pauli	Faculty Advisor, Instructor	https://profiles.arizona.edu/person/dukepauli
Yang Song	Faculty Advisor, Instructor	https://profiles.arizona.edu/person/chopinsong
Winslow Burleson	Faculty	https://profiles.arizona.edu/person/win
Andrew Comrie	Faculty	https://profiles.arizona.edu/person/comrie
Jennifer Croissant	Faculty Co-Advisor, Faculty Co-Advisor,	https://profiles.arizona.edu/person/jlc
	Contribute to RNR696A and EIS 596A	
Erin Leahey	Faculty Co-Advisor, Faculty Co-Advisor,	https://profiles.arizona.edu/person/leahey
	Contribute to RNR696A and EIS 596A	

VII. STUDENT LEARNING OUTCOMES AND CURRICULUM MAP - describe what students should know, understand, and/or be able to do at the conclusion of this minor. Work with the <u>Office of</u> <u>Instruction and Assessment</u> to create a curricular map using Taskstream. Include your curricular map in this section.

Upon concluding the minor in Ecosystem Genomics, doctoral students will:

- 1. Apply the principles of **scientific collaboration and interdisciplinarity**, with knowledge of risks and benefits
- 2. **Communicate effectively about ecosystem genomics** with diverse peers, stakeholders, partners, mentees, and scientists
- 3. Identify and develop strategies for addressing grand challenges in sustainability and innovation, for which ecosystem genomics can provide solutions
- 4. Use, interpret, and communicate the core **conceptual**, **theoretical**, **analytical**, **computational**, **and data elements** of ecosystem genomics

These will be achieved via the curriculum, as mapped below. Students will take two successive semesters of the **Ecosystem Genomics seminar course (RNR 696A, 2 credits)** in fall semester and the companion Ecosystem Genomics (**EIS 596A, 1 credit)** in spring, with most topics introduced or introduced and practiced in the first semester and practiced and assessed in the second semester. Concurrently or thereafter, they will take electives, choosing one course from three of four core areas at the discretion/direction of their major and minor advisors.

The comprehensive exam for the Ecosystem Genomics GIDP minor may take the form of a written question or a portion of a question with a focus on ecosystem genomics, and/or having

elements of ecosystem genomics in the research proposal, at the discretion of the minor representative and the committee. It also is expected that ecosystem genomics will be represented as a theme in the oral exam, at the discretion of the faculty representing the GIDP minor. This may take the form of a series of questions or discussion points between the student and minor representative with respect to ecosystem genomics.

Courses and outcomes are mapped below for the minor. RNR 696A as the Ecosystem Genomics seminar is listed for both fall and spring, but the spring course is now listed as EIS 596A.

Ecosystem Genomics Minor

Courses and Activities Mapped to Ecosystem Genomics Minor

		Outo	ome	
	Outcome 1: Collaboration & Interdisciplinarity Apply the principles of scientific collaboration and interdisciplinarity, with knowledge of risks and benefits.	Outcome 2 Communication Communicate effectively about ecosystem genomics with diverse peers, stakehold ers, partners, mentees, and scientists.	Outcome 3: Grand Chalkenges Identify and develop strategies for add ressing grand chalkenges in sustainability and innovation, for which ecosystem genomics can provide solutions.	Outcome 4: Interpretation Communication Use, interpret, and communicat the core conceptual theoretics analytical computational and data elements of ecosystem genomics.
Courses and Learning Ad	ctivities			
RNR 696a Boosystems Genom ts Sem Ivar (Fall)			T	L
RNR 696A Eccasystem Ge⊪omics Semiluar (Sprtlug)	р	р	р	р
RNR 6964. Boosystem Genom ba	A	A	A	A
Comp Exam Oral Compretensible Exam		A	A	A
Dissertation De fense		A	A	A
ExitSilley Qualtrics ExitSilley	A	A	A	A

VIII. ASSESSMENT PLAN FOR STUDENT LEARNING - using the table below, provide a schedule for program assessment of intended student learning outcomes 1) while students are in the program and 2) after completion of the minor. Add rows as needed.

Learning Outcomes	Sources(s) of Evidence	Assessment Measures	Data Collection Points
Outcome 1: Apply the principles of scientific collaboration and interdisciplinarity, with knowledge of risks and benefits	 Course-embedded assessments in the core course, Ecosystem Genomics Seminar (RNR 696A and EIS 596A) Student: Pre- and post questionnaires 	- Formative and summative assessments including discussions, discourse, and presentations in the core course	 Upon declaration and completion of the minor In core course

		- Self-evaluation of interdisciplinarity and collaboration skills	
Outcome 2: Communicate effectively about ecosystem genomics with diverse peers, stakeholders, partners, mentees, and scientists	 Course-embedded assessments in the core course, Ecosystem Genomics Seminar (RNR 696A and EIS 596A) Student: Pre- and post questionnaires Minor advisor: evaluation during oral comprehensive exam 	 Formative and summative assessments including discussions, discourse, and presentations in the core course Self-reflection and ranking of communication Successful passing of the oral exam 	 Upon declaration and completion of the minor In core course Oral comprehensive exam
Outcome 3: Identify and develop strategies for addressing grand challenges in sustainability and innovation, for which ecosystem genomics can provide solutions	 Course-embedded assessments in the core course, Ecosystem Genomics Seminar (RNR 696A and EIS 596A) Student: Pre- and post questionnaires Minor advisor: evaluation during oral comprehensive exam 	 Formative and summative assessments including discussions, discourse, and presentations in the core course Self-reflection and questionnaire responses Successful passing of the oral exam 	 Upon declaration and completion of the minor In core course Oral comprehensive exam
Outcome 4: Use, interpret, and communicate the core conceptual , theoretical , analytical , computational , and data elements of ecosystem genomics	 Course-embedded assessments in the core course, Ecosystem Genomics Seminar (RNR 696A and EIS 596A) Student: Pre- and post questionnaires Minor advisor: evaluation during oral comprehensive exam 	 Formative and summative assessments including discussions, discourse, and presentations in the core course Self-reflection and questionnaire responses Successful passing of the oral exam 	 Upon declaration and completion of the minor In core course Oral comprehensive exam

IX. ANTICIPATED STUDENT ENROLLMENT - complete the table below. What concrete evidence/data was used to arrive at the numbers?

5-YEAR PROJECTED ANNUAL ENROLLMENT: DOCTORAL STUDENTS					
	1 st Year	2 nd Year	3 rd Year	4 th Year	5 th Year
Number of Students	6-8	12-16	18-24	24-32	34-40

Data/evidence used to determine projected enrollment numbers: The Ecosystem Genomics PhD Minor is motivated by a 5-year NSF training grant, which will fund approximately 3-4 doctoral fellows and engage approximately 3-4 additional doctoral participants per year.

X. ANTICIPATED MINORS AWARDED - complete the table below, beginning with the first year in which the minor will be awarded. How did you arrive at these numbers? Take into consideration departmental retention rates.

PROJECTED MINORS AWARDED ANNUALLY: DOCTORAL STUDENTS						
	1 st Year	2 nd Year	3 rd Year	4 th Year	5 th Year	
Number of Minors	0	0	2	4	8	

Data/evidence used to determine number of anticipated minors awarded annually: We anticipate that currently enrolled graduate students spanning at least nine units on the UArizona campus (EEB, EIS, SPLS, BE, HAS, ENVS, SNRE, INFO, and GEOG) may wish to adopt the new program as their doctoral minor. These will be first-year doctoral students, entering their second semester, such that their graduation dates will be in y5+ of the existence of this program.

XI. PROGRAM DEVELOPMENT TIMELINE - plans and timelines for 1) marketing the minor and 2) student recruitment activities.

The Ecosystem Genomics GIDP recruitment team will contact colleagues at the University of Arizona and other universities; ask GIDP faculty to recruit for the program; request REU program coordinators to share information with their students; and advertise the minor on organizational listservs such as the Ecological Society of America, American Society for Microbiology, and Out in STEM to enhance recruitment of students to existing UArizona graduate majors relevant to ecosystem genomics, with the added opportunity to then minor in the GIDP.

The program will send a representative to recruit at the Annual Biomedical Research Conference for Minority Students (ABRCMS), the Society for Advancement of Chicanos/Hispanics, Native Americans in Science (SACNAS), and/or the American Indian Science and Engineering Society (AISES) as funds permit through fall 2025. The marketing and recruitment process is motivated initially by a five-year training grant. Doctoral fellows and participants accepted into this training grant will automatically be enrolled into the Ecosystem Genomics GIDP PhD minor and will make up most of the students accepted through 2025.

Sample Marketing and Recruitment Timeline

Summer 2021 Update website ahead of recruitment season Confirm and activate GIDP leadership team Fall 2021 (pending approval)

Enroll current PhD students in the fall core course, RNR 696A (Ecosystem Genomics Seminar, 2 credits) Share flyer/brochure and announcements with Directors of Graduate Studies

Confirm GIDP faculty commitment and host organizational meeting for GIDP faculty

Present GIDP as an exciting opportunity for prospective students SACNAS, AISES, peer institutions that are minority-serving, etc.

Communicate with graduate programs admission committees, directors of graduate studies, and graduate program coordinators about sharing GIDP information with PhD applicants to their programs Remind GIDP faculty and graduate program coordinators to direct PhD applicants to GIDP website Advise active PhD students in the minor to enroll in elective(s) for spring

Spring 2022

Host online informational meeting for interested applicants to the GIDP who are applying to partner PhD majors at UArizona

Host online informational meeting for faculty who may wish to join the GIDP; vote in January and at annual intervals thereafter

Enroll current PhD students who have chosen the minor in the spring core course, EIS 596A (Ecosystem Genomics Seminar, 1 credit); host social event

Convene GIDP advisory/assessment teams and evaluate program recruitment and marketing Offer informational and social opportunity via Zoom for PhD applicants; offer tours and social activities to interested students

Finalize fall cohort for fall 2023

Summer 2022

Assess recruitment and marketing success; evaluate diversity and revise strategies as needed Update recruitment and marketing approaches.

Host all-GIDP meeting with presentations, social activities, and professional training for all GIDP faculty and students. Repeat all above.

XII. DIVERSITY AND INCLUSION - describe how you will recruit diverse students and faculty to this program. In addition, describe retention efforts in place or being developed in order to retain students.

Achieving a diverse GIDP requires focused efforts to find and recruit students. All participating departments/doctoral majors have room to improve diversity, inclusion, equity, and representation among their graduate students, a process that will be aided by this GIDP as a recruitment tool. Such improvements are critical to our vision of successfully implementing this program.

Our GIDP Co-chairs are mindful of this goal and already have established partnerships with Michelle Higgins, UArizona Office of Societal Impact, and Frans Tax, UArizona Graduate College. Their insight and guidance will enhance our efforts to develop recruitment strategies that grow the diversity of the GIDP and its affiliated majors.

We will work closely with the UArizona Graduate College to engage underrepresented-in-STEM students, with four main strategies: reaching out directly to diversity-serving conferences and institutions; presenting the GIDP program to STEM students in UArizona's cultural centers and at regional peer institutions that are minority serving; working closely with the UArizona Graduate College to develop and leverage complementary funds for underrepresented minority students; and providing student support in the form of a trained program manager/program coordinator with a strong background in inclusion initiatives in STEM.

ARIZONA PEER COMPARISON FORM

Graduate Minor Peer Comparison Chart- select two peers for completing the comparison chart from (in order of priority) <u>ABOR-approved institutions</u>, <u>AAU members</u>, and/or other relevant institutions recognized in the field. The comparison chart will be used to identify typically required coursework, themes, and experiences for minor programs within the discipline. <u>The comparison programs are not required to have</u> the same minor name as the proposed UA program. Information for the proposed UA program must be consistent throughout the proposal documents.

Minor name, institution	Proposed UA Program: Ecosystem Genomics PhD GIDP Minor	Peer 1: Northern Arizona University Ecological and Environmental Informatics (EEI) T3 Option for PhD students in Informatics	Peer 2: Environmental Life Sciences PhD program at Arizona State University
Current # of enrolled students		11	29
Minor program description	The Ecosystem Genomics GIDP PhD Minor will support and train diverse, outstanding doctoral students in ecosystem genomics, an emergent discipline that integrates across biotic systems from genes to ecosystems to solve grand challenges in sustainability and innovation in a rapidly changing world. As an innovative, interdisciplinary area of study, ecosystem genomics represents the synthesis of ecosystem- and genomic sciences via the tools of computational biology, modeling, data science, experiments, theory, applications, and the approaches and power of 'big data' in a collaborative and convergent framework.	The T ³ option in Ecological and Environmental Informatics enhances the Informatics (INF) PhD program at NAU, providing innovative training in informatics, ecology, team-based research, and communication. It is funded by the prestigious National Science Foundation's Research Traineeship (NRT) program, as is the initial phase of the Ecosystem Genomics NRT at the University of Arizona, through which the Ecosystem Genomics GIDP Minor is being initiated. Students enrolled in the INF PhD program with an emphasis in Ecological and Environmental Informatics have the opportunity to enhance their training through coursework in team science and communication along with cohort-	The Environmental Life Sciences PhD program is a unique degree that trains students to solve complex environmental challenges and explore ecological questions in the context of natural and human-caused environmental change. Environmental Life Sciences is an interdisciplinary program providing focused training on ecological and environmental questions in a changing world. 84 credits are required, including one core class, electives, seminars, reading groups and research. We encourage you to explore and solve complex questions in the context of natural and anthropogenic environmental change.
	The ultimate aim of the Ecosystem Genomics GIDP is to foster a new generation of diverse transdisciplinary scientists to address the challenges of sustaining natural and managed ecosystems on which humans depend, including wildlands, agricultural systems, forests, arid lands, and marine environments. The coursework supported by this minor will help students think across scales from 'genes to ecosystems' as they develop skills in interdisciplinarity, scientific communication, and collaboration. At is core the minor will foster and extend students' excellence in areas such as data science, microbiology, plant sciences, insect science, environmental science, atmospheric science,	 building activities. Goal: The EEI T3 option seeks to train students to independently and collaboratively leverage cutting-edge informatics tools with skills and knowledge of ecology and related environmental science disciplines to address the most pressing environmental issues facing societies today. This program differs from the Ecosystem Genomics GIDP proposed for the University of Arizona in several key ways. T3 is an option within an informatics major, rather than a minor for students in diverse STEM majors. T3 is oriented distinctively toward informatics and computation, providing informatics students with ecological and ecosystem thinking skills and context. In contrast, the UArizona 	 This program differs from the Ecosystem Genomics GIDP proposed for the University of Arizona in several key ways. This PhD major does not explicitly train students in the convergent, emergent science of ecosystem genomics. Electives in the ASU program center on geology, hydrology, behavior, physiology, evolutionary biology/population genetics, ecology, ecosystem science, and sustainability. They are not explicitly oriented specifically to interdisciplinary training, training in collaboration, development of complementary skill sets in genomics and ecosystem science, or 'big data' the strengths of the UArizona proposed GIDP.

	biosystems engineering, ecology and evolutionary biology, geography and informational science, and it is intended to attract students majoring in these UArizona programs. Ultimately the minor will help students translate ideas into meaningful scientific advances while cultivating deep and broad skill sets and promises to prepare students for important roles in solving grand challenges relevant to regional, national, and international issues in sustainability and innovation.	Ecosystem Genomics GIDP brings together students in seven STEM graduate majors spanning ecosystem science and genomics and connects them with informatics tools/informatics/computation to train them in the emergent, convergent science of ecosystem genomics. • Thus, the programs are distinct and highly complementary.	• Thus, the programs are distinct and highly complementary.
Minimum total units required	11 (3 core + 8 or more elective units)	60+ (option within a graduate major; T3 option itself, see below)	80+ (graduate major)
Pre- admission expectations (i.e., academic training to be completed prior to admission)	Active graduate student with background and training in the field, enrolled as a doctoral student in a relevant graduate program aligned with ecosystem genomics (e.g., but not limited to, EEB, EIS, SPLS, BE, HAS, ENVS, SNRE, INFO, GEOG).	Admitted to INF PhD program	Admitted to the PhD program of the School of Life Sciences
Minor	Active graduate student with a	INF Core Requirements:	Core requirement:
requirement	background and training in		
s. List all minor requirement s including core and electives. Courses listed must include course prefix, number, units, and title. Mark new coursework (New). Include any limits/restri ctions needed (house number limit, etc.).	ecology, evolutionary biology, entomology, plant sciences, biosystems engineering, hydrology, atmospheric science, environmental science, and/or natural resource management; enrolled as a doctoral student in a relevant graduate program aligned with ecosystem genomics (e.g., but not limited to, Ecology and Evolutionary Biology (EEB), Entomology and Insect Sciences (EIS), School of Plant Sciences (SPLS), Biosystems Engineering (BE), Hydrology and Atmospheric Sciences (HAS), Environmental Sciences (ENVS), School of Natural Resources and the Environment (SNRE), School of Information (INFO) and School of Geography, Development, and Environment (GEOG). To apply, an interested student	 INF501 (Informatics & Computing Seminar), INF502 (Software Development Methodologies), INF503 (Large-scale data structures and organization), INF504 (Data Mining & Machine Learning), INF 511 & 512 (Modern Regression I & II), INF 605 (Professional & Career Development), Dissertation credits T3 Emphasis Area Requirements: INF 623 (Ecoinformatics Seminar - enroll multiple semesters), INF690 (Team-based Interdisciplinary Research) 	ELS 501 Grand Challenges in Environmental Life Sciences Electives: At least two elective courses (3 credit hours each) are required from 500+ level courses related to the following topics: Earth sciences (e.g., geology, hydrology); organismal biology (e.g., physiology and behavior); evolutionary biology (e.g., population genetics); ecology/ecosystems/biogeochemi stry; sustainability and social/policy
Provide email(s)/lett er(s) of support from home	should contact the Program Coordinator or co-chairs. There are no additional GPA requirements beyond a 3.0.	Research), INF550 (Survey in Ecoinformatics Tools),	
department head(s) for		Electives - 11 credits total - student can choose at least 3 credits from INF	

courses not owned by your department.	Complete 3 units of core coursework: -RNR 696A (2) Ecosystems Genomics Seminar, fall -EIS 596A (1) Ecosystem Genomics Seminar, spring	grad classes and 9 or more credits from INF, CS, EE, BIO, FOR, SES, STA, MAT grad courses.	
	Complete 3 elective courses , choosing one course from each of three of the following four areas (to be chosen in conjunction with major and minor advisor/doctoral advising committee) for a minimum of 8 units.		
	All courses already exist and are taught regularly in person on the UArizona main campus. We have reached out to instructors and unit/department heads to confirm that the graduate certificate would not create enrollment challenges. Letters of support are included.		
	11 units required (3 core + 8 or more elective units)		
	Complete 3 units of core coursework:		
	-RNR 696A (2) Ecosystems Genomics Seminar, fall -EIS 596A (1) Ecosystem Genomics Seminar, spring		
	Complete 3 courses, choosing <u>one</u> course from each of three of the following four areas (to be chosen in conjunction with advisor/graduate advising committee) for a minimum of 8 units		
	1. Communication & Dissemination -ENVS 508 (3) Scientific Writing for Env., Ag., & Life Sciences -ENVS 515 (3) Translating Environmental Science -WSM/GEOS 595E (currently 1, will become 3 after fall 2021) Scientific Writing (Topics in		
	Dendrochronology) -INFO 520 (3) Ethical Issues in Information -INFO 536 (3) Data Science and Public Interests		
	2. Theory & Concepts: Ecosystem & Earth Science		

	-ENVS 511 (3) Environmental		
	Metabolomics		
	-ENVS510 (3) Microbial		
	Biogeochemistry and Global		
	Change		
	-RNR 558 (3) Ecosystem Ecology		
	and a Sustainable Future		
	-ENVS 525 (3) Environmental		
	Microbiology		
	-ECOL 578 (3) Global Change		
	-ATMO 536A (3) Fundamentals of		
	Atmospheric Sciences		
	-GC 530 (3) The Climate System -GC 597A (3) Global Change		
	Research, Application, and		
	Decision Making		
	Decision Making		
	3. Theory & Concepts: Genomic		
	Biology		
	-ECOL 553 (4) Functional and		
	Evolutionary Genomics		
	-ECOL 596A (1) Evolutionary		
	Ecology		
	-ECOL 600A (3) Fundamentals of		
	Evolution		
	-ECOL 565 (3) Phylogenetic		
	Biology		
	-EIS 544 (3) Insect Ecology		
	-PLP 550 (4) Principles of Plant		
	Microbiology		
	4. Tools & Data: Data Analytics		
	-BE 534 (3) Biosystem Analytics		
	-BE 587 (3) Metagenomics: From		
	Genes to Ecosystems		
	-ECOL 580 (3) Mathematical		
	Models in Biology		
	-ENVS 567 (3) Introductory		
	Statistics & Multivariate Statistics		
	with R (undergoing course name		
	change to Statistical analysis of		
	ecological and environmental data		
	with R)		
	-INFO 533 (3) Medical On-Line		
	Searching -INFO 544 (3) Informatics in		
	Biology		
	-INFO 597 (1-6) Biodiversity		
	Informatics		
Research	Yes, integrated into the required	Yes - coursework in software and	Part of the graduate training
methods,	Ecosystem Genomics seminar	statistical methods; course in	requirement for doctoral students
data	and delivered through training for	Ecological Informatics tools and	in the program, through their own
analysis, &	their majors.	products (INF550)	research; students also must take
methodology			one quantitative class. No
requirement			additional research methods/data
s. (Yes/No. If			analysis/methodology
yes, provide			requirements.
description)	NI-	NI-	NI-
Internship,	No	No	No
practicum, applied			
course			<u> </u>

requirement s (Yes/No). If yes, provide description.			
Additional requirement s (provide description)	No	No	No

*Note: comparison of additional relevant programs may be requested.

Budget Contact Person: Heather Ingram, Program Coordinator; A. Elizabeth Arnold and Bonnie Hurwitz, GIDP CO-Chairs

	1	1		1
METRICS	1st Year	2nd Year	3rd Year	Notes
	2021 - 2022	2022 - 2023	2023 - 2024	
Net increase in annual college	NA	NA	NA	
enrollment UG				
Net increase in college SCH UG	NA	NA	NA	
Net increase in annual college	2-5	4-10	6-15	
enrollment Grad Net increase in college SCH Grad	12-30	48-72	72-96	
Number of enrollments being	NA	NA	NA	
charged a Program Fee				
New Sponsored Activity (MTDC)	NA	NA	NA	
Number of Faculty FTE: 14 core	0.37	0.37	0.37	Includes admin and
faculty, providing admin and teaching in existing courses				instruction. Existing faculty and courses. No new hires or courses.
FUNDING SOURCES				
Continuing Sources UG RCM Revenue (net of cost			_	
allocation)				
Grad RCM Revenue (net of cost				
allocation)		1		
Program Fee RCM Revenue (net of				
cost allocation)			-	
F and A Revenues (net of cost allocations)				
UA Online Revenues	1	1		1
Distance Learning Revenues			1	
College fund balances	\$28,000	\$28,000	\$28,000	Non GIDP funded. Allocated by
				Dean of COS, Head of EEB, and Assoc Dean for Research, CALS.Funding towards Program Manager/ Coordinator
Institutional Strategic Investment				
Gift Funding				
Personnel	\$70,169	\$71,572	\$74,003	NSF NRT: Program Manager/Coordinator (.75 FTE) + ERE; Website developer (Indept. Cont.). Funding for personnel for the GIDP will be non-Graduate College/GIDP resources.
Other Items	\$6,500	\$6,500	\$6,500	Amount includes the Chair stipend amount for the minor (\$4,000) and the certificate (\$2,500)- in effect the first year students admitted
Other items continued	\$2,000	\$2,000	\$2,000	\$2,000 operations budget from GIDP Admin
Total Continuing	\$106,669.00	\$108,072.00	\$110,503.00	
	+100,000.00	2100,072.00	÷110,303.00	
One-time Sources				
Total One-time	\$0.00	\$0.00	\$0.00	
	\$106,669.00	¢108.073.00	\$110,503.00	
	\$106,669.00	\$108,072.00	\$110,503.00	
EXPENDITURE ITEMS				
Continuing Expenditures				
Faculty				
Other Personnel	\$70,169	\$71,572	\$74,003	NSF NRT: Program Manager/Coordinator (.75 FTE) + ERE; Website developer (Indept. Cont.). Funding for personnel for the GIDP will be non-Graduate College/GIDP resources.
Employee Related Expense		+		+
Graduate Assistantships Other Graduate Aid			-	
Operations (materials, supplies, pho	ones, etc.)	1		1
Additional Space Cost		1		1

College fund balances (COS, EEB, and CALS)	\$28,000	\$28,000	\$28,000	Non GIDP funded. Allocated by Dean of COS, Head of EEB, and Assoc Dean for Research, CALS.Funding towards Program Manager/ Coordinator
Other Items (attach description)	\$6,500	\$6,500	\$6,500	Amount includes the Chair stipend amount for the minor (\$4,000) and the certificate (\$2,500)- in effect the first year students admitted
Other items continued	\$2,000	\$2,000	\$2,000	\$2,000 operations budget from GIDP Admin
Total Continuing	\$106,669.00	\$108,072.00	\$110,503.00	
One-time Expenditures				
Construction or Renovation				
Start-up Equipment				
Replace Equipment				
Library Resources				
Other Items (attach description)				
Total One-time	\$0.00	\$0.00	\$0.00	
TOTAL EXPENDITURES	\$106,669.00	\$108,072.00	\$110,503.00	
Net Projected Fiscal Effect	\$0.00	\$0.00	\$0.00	All expenditures covered; no net cost. Gain from SCH and

*This form includes the budget and expenses for both the GIDP Graduate Certificate and PhD Minor.
**The GIDP Graduate Certificate is intended to attract students to our participating graduate programs, with the aim of increasing graduate student enrollment in courses offered by units in our partner colleges.

College and Departmental Support Documentation

From: Cheu, Elliott C - (echeu) <<u>echeu@arizona.edu</u>> Sent: Tuesday, October 20, 2020 12:05 PM To: Saleska, Scott R - (saleska) <<u>saleska@arizona.edu</u>>; Worobey, Michael - (worobey) <<u>worobey@arizona.edu</u>> Cc: Grimm, Kelly J - (grimmk) <<u>grimmk@arizona.edu</u>> Subject: RE: NSF NRT and BII grants on the cusp, request

Hi Scott,

Mike and I will split the \$20K/year for the duration of the grants.

Best regards,

Elliott Cheu, Ph.D. Interim Dean, College of Science Distinguished Professor of Physics University of Arizona (520) 621-4092

On Wed, Oct 21, 2020 at 10:46 AM Antin, Parker B - (pba) <<u>pba@arizona.edu</u>> wrote: Hi Betsy,

While we don't directly connect investments such as this to IDC return, the CALS Research Office will be pleased to provide \$8000 per year for the next five years to help fund this position.

Best,

Parker

Of: 520-621-1856 Fax: 520-621-9118

February 5, 2020

Dear Dr. Saleska,

We are pleased to support your team's proposal to the NSF Research Traineeship program (NRT) in the priority area of Rules of Life (RoL), entitled "**NRT-RoL: BRIDGETS – Building Resources for InterDisciplinary training in Genomics and Ecosystem Sciences**."

We commit to collaborating with you to support this important training initiative in concrete ways (see below), and more fundamentally, to advance long-term sustainability of ecosystem genomics as an emerging critical science at University of Arizona (UA), through continued recruitment of new faculty; supporting your team's endeavors in research, teaching, curriculum development, outreach, and mentorship through the ecosystem genomics initiative; and enhancing and formalizing graduate student training through formation of a new graduate interdisciplinary program (GIDP) in ecosystem genomics.

The University has fostered the growth of an interdisciplinary, interdepartmental faculty cluster in ecosystem genomics: in the last year and a half, we have hired seven new assistant or associate professors across five departments (all of whom are now part of your core team). *This represents a multi-million dollar long-term investment in advancing this field at UA, directly illustrating our institutional commitment to recruiting and supporting the kind of faculty needed to make an NRT-catalyzed training program in ecosystem genomics a long-term success.*

To support your NSF NRT program in Ecosystem Genomics we will:

- <u>Provide tuition assistance for the NRT trainees in your program</u>, in the form of out-of-state tuition waivers **(up to 15 waivers annually)**. These will reduce non-resident tuition to in-state levels for NRT trainees who are not residents of the state of Arizona. The grant would be responsible for covering in-state tuition and fees for trainees as outlined in your budget.
- <u>Advance the long-term sustainability of ecosystem genomics at UA</u> through ongoing support of tangible initiatives, as showcased by our commitment to hiring new faculty in this field (above).
- <u>Advance recruitment of diverse trainees</u> through the leverage and fostering of strong diversity programs, including UA's #1 ranking in PhDs awarded to Native Americans, and its recent designation as a Hispanic-Serving Institution. The Graduate College oversees the successful program called University of Arizona/Alfred P. Sloan Indigenous Graduate Partnership (UA/SIGP) that provides fellowships for Native American students to pursue graduate degrees in science, technology, engineering, and mathematics. In addition, the UA Graduate College runs a strong undergraduate diversity mentoring program called the Undergraduate Research Opportunities Consortium (UROC) that works with NSF-affiliated Research Experiences for Undergraduates. The Graduate College office of Diversity and Inclusion, under the directorship of **Dr. Frans Tax**, commits to work with you to make connections with UROC and UA/SIGP to recruit seniors to the NRT Trainee Program.
- <u>Support your team's development of curriculum, mentorship, and training</u>, in order to leverage the expertise and advance the aims of the PIs, key personnel, and affiliated faculty relevant to the NRT.
- <u>Support and assist in the creation of a new GIDP</u>, enabling graduate students based in multiple departments across campus to declare and receive a certificate (minor) in Ecosystem Genomics.

We are pleased that you have received additional internal commitments of partnership and collaboration form diverse professionals, leaders, and partners at the UA, including the following:

- The BIO5 Institute, directed by Dr. Jennifer Barton, which promotes excellence in interdisciplinary biosciences research, translation, and education outreach and training, will provide space (offices and laboratories for faculty and students) and a centralized home for the UA's Ecosystem Genomics Initiative and cluster hire, and if funded, the proposed NRT. This commitment includes offices for NRT Co-PI's Wing and Hurwitz, offices for the junior faculty who are among the core personnel of the proposed NRT (BarberanTfaily, Meredith, and U'ren), with office and lab space at BIO5 for NRT PI Saleska. We recognize that the availability of common space for scholars from across different Departments and Colleges is invaluable for fostering the sense community and teamwork that is critical to the success of a program like NRT. In addition, Dr. Barton and BIO5 will support an NRT Ecosystem Genomics Seminar series that will bring 2-3 domestic and international speakers per year to UA, thus providing institutional support for the NRT training program.
- University of Arizona's Biosphere 2, directed by Joaquin Ruiz, will provide access to the resources and experimental biomes of Biosphere 2, enabling one of the proposed NRT student research experiences in ecosystem genomics (section C.1.(iii)). Biosphere 2 consists of diverse biomes (desert, savannah, ocean, mangrove, tropical rainforest) and the Landscape Evolutionary Observatory (LEO), which are controlled environments for sampling and studying taxonomic and metabolic diversity in different ecosystem components. These provide a basis for achieving key NRT research goals in genes-to-ecosystem scaling through links to ongoing observations of ecosystem-scale metabolic function (e.g., soil fluxes of greenhouse gases methane, nitrous oxide, carbon dioxide, and water vapor). Biosphere 2 is also a foundation for outreach about the globally connected nature of earth's biosphere to the general public, using Biosphere 2's biomes as a nexus for connecting with the ~100,000 visitors per year to Biosphere 2's outreach program;
- **Dr. Uwe Hilgert**, Director of Industry Relations, STEM Training & Workforce Development in BIO5, will assist with coordinating outreach to high school students, connect NRT trainees to career opportunities, and enhance our recruitment and placement of underrepresent students in STEM.
- **Directors/Coordinators/Chairs of Graduate studies** have also agreed to coordinate student recruitment into the NRT of students from participating academic units, including:
 - o Drs. Michelle McMahon, Plant Sciences and Plant Pathology, School of Plant Sciences;
 - **Dr. Jeremiah Hackett**, Associate Department Head, Ecology and Evolutionary Biology;
 - o Dr. Marcel Schaap, Environmental Science;
 - o Dr. Martha S. (Molly) Hunter, Chair, GIDP in Entomology & Insect Science;
 - o Dr. Rachel Gallery, Associate Director, School of Natural Resources & the Environment;
 - **Dr. Christopher Castro**, Hydrology and Atmospheric Sciences;
 - o Dr. Muluneh Yitayew, Biosystems Engineering; and
 - o Dr. Lars Fogelin, Anthropology; Dr. Eithne Luibheid, Gender & Women's Studies

In conclusion, we wish you the best of luck in your proposal submission and look forward to hearing the results of the review of your NRT-RoL proposal at NSF.

Sincerely,

Liesl Folks, PhD, MBA Senior Vice President and Provost

Andrew Carnie, PhD Vice Provost/Dean, Graduate Education

ENR2 Building, South 4th Floor PO Box 210137 Tucson, Arizona 85721-0137 Ofc: 520-621-1652 Fax: 520-621-2889 geography.arizona.edu

October 14, 2021

Dr. Andrew Carnie Dean, Graduate College Administration 322 CAMPUS

Dear Andrew:

This letter is to convey my strong support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which I understand will offer both a PhD Minor and a Graduate Certificate.

These tracks will provide interdisciplinary education for students working at the boundary of ecosystem sciences and genomics. We anticipate that some of our graduate students in Geography will be interested in these new options. Also, several of our graduate courses will be included in the recommended list for these GIDP students as options for their minor or certificate, including GEOG 530 *The Climate System* and GC 597a *Global Change Research, Application, and Decision-Making* (which is taught by one of our faculty members for the Global Change GIDP).

Based on discussions with our faculty, I don't foresee any conflicts in curriculum or related matters within our School in relation to the establishment of this new GIDP. As mentioned above, we expect this minor to appeal to certain incoming and current students in our program, which will provide useful links between SGDE and the other participating graduate programs.

Sincerely,

Andrew C. Comrie, Ph.D. Professor & Director

1103 E. 2nd St., Tucson, AZ 85721

September 30, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

We anticipate that several of our graduate courses will be recommended to GIDP students as optional courses for their minor or certificate:

INFO 520: Ethical Issues in Information INFO 533: Medical On-Line Searching INFO 536: Data Science and Public Interests INFO 554: Informatics in Biology INFO 597: Biodiversity Informatics

I foresee no conflicts in curriculum or related matters within my department with the establishment of this GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate program with other participating graduate programs on the University of Arizona campus.

Sincerely,

Minto Splean

Winslow Burleson, Ph.D. Professor, Director of Research, & Associate Director, School of Information

04/20/21

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express support for the newly proposed Graduate Interdisciplinary Program (GIDP) in Ecosystem Genomics at the University of Arizona.

The GIDP will train diverse graduate students to think across scales from 'genes to ecosystems'. By earning a graduate certificate or PhD minor in the emergent science of ecosystem genomics, students will complement and extend their core disciplinary training in a way that we consider highly promising for successful careers in industry positions such as the ones we offer. One of the grand challenges of our company is to sequence the pangenome of the Earth's microbes and discover novel therapeutics. The cross-cutting skillsets that this GIDP will provide will leave graduates poised to address such challenges at the bench and at the computer.

The coursework and transdisciplinary research supported by this GIDP will help students develop skills in interdisciplinarity, scientific communication, and collaboration while also fostering their excellence in areas such as data science, microbiology, plant sciences, insect science, environmental science, atmospheric science, biosystems engineering, ecology, and evolutionary biology. The GIDP will help students translate ideas into meaningful scientific advances while cultivating deep and broad skill sets via rich coursework and robust mentorship. This GIDP promises to prepare students for important roles in solving grand challenges relevant to regional, national, and international issues in sustainability and innovation. The University of Arizona has already demonstrated excellence in this area, with two recent UA trainees joining Hexagon Bio and bringing powerful insights given their prior interdisciplinary training. By formalizing this type of training and recognizing it in a minor this GIDP promises to help PhD students advertise these skillsets to potential employers.

Our company is excited to see this kind of training program, as we view the skills and training fostered by this GIDP to be key to preparing new generations of diverse scientists to enter a cutting-edge workforce. The University of Arizona's GIDP in Ecosystem Genomics is innovative and unique, and it will be a welcome addition to graduate training experiences across diverse disciplines.

Sincerely,

manna Hilmiga

Maureen Hillenmeyer, PhD

Co-founder and CEO, Hexagon Bio

April 20, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express support for the newly proposed Graduate Interdisciplinary Program (GIDP) in Ecosystem Genomics at the University of Arizona.

The GIDP will train diverse graduate students to think across scales from 'genes to ecosystems.' By earning a graduate certificate or PhD minor in the emergent science of ecosystem genomics, students will complement and extend their core disciplinary training in a way that we consider highly promising for successful careers in industry positions in companies such as Pluton Bio.

The coursework and transdisciplinary research supported by this GIDP will help students develop skills in interdisciplinarity, scientific communication, and collaboration while also fostering their excellence in areas such as data science, microbiology, plant sciences, insect science, environmental science, atmospheric science, biosystems engineering, ecology, and evolutionary biology. The GIDP will help students translate ideas into meaningful scientific advances while cultivating deep and broad skill sets via rich coursework and robust mentorship. This GIDP promises to prepare students for important roles in solving grand challenges relevant to regional, national, and international issues in sustainability and innovation.

Our company is excited to see this kind of training program, as we view the skills and training fostered by this GIDP to be key to preparing new generations of diverse scientists to enter a cutting-edge workforce. The University of Arizona's GIDP in Ecosystem Genomics is innovative and unique. It will be a welcome addition to graduate training experiences across diverse disciplines.

Sincerely,

Banyhh

Barry Goldman, PhD

CEO/CSO Pluton Biosciences

School of Plant Sciences College of Agriculture and Life Sciences 520.621.1977 Telephone 1145 E. South Campus Drive P.O. Box 210036 Tucson, Arizona 85721-0036 520.621.7186 FAX www.cals.arizona.edu/pls

MEMORANDUM

Date: March 29, 2021

To: Dr. Andrew Carnie, Dean of the UArizona Graduate College

From: Dr. Matthew A. Jenks, Director for the School of Plant Sciences

Subject: Graduate Interdisciplinary Minor and Certificate in Ecosystem Genomics

Dear Dr. Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate. I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics. We anticipate that one of our graduate courses will be recommended to GIDP students as an optional course for their minor or certificate:

PLP 550: Principles of Plant Microbiology

I foresee no conflicts in curriculum or related matters within my School with the establishment of this GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate program with other participating graduate programs on the University of Arizona campus.

Jack

Matthew A. Jenks Director for the School of Plant Sciences

Office of the Director ENR-2 – Room N333 1064 Lowell Street Tucson, AZ 85721 Telephone: (520) 626-0058 Fax (520) 621-8801 http://snre.arizona.edu/

March 13, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Andrew:

I am writing to express my full support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

We anticipate that several of our graduate courses will be recommended to GIDP students as optional courses for their minor or certificate:

RNR 558: Ecosystem Ecology and a Sustainable Future RNR 621: Applied Statistics RNR 696A: Ecosystem Genomics

I foresee no conflicts in curriculum or related matters within my department with the establishment of this new GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate program with other participating graduate programs on the University of Arizona campus.

Sincerely,

Willem J.D. van Leeuwen, Interim Director and Professor School of Natural Resources and the Environment

429 Shantz Building, #38 1177 E. Fourth St. POB 210038 Tucson, AZ 85721-0038 USA (520) 621-1646 FAX: (520) 621-1647 sw@ag.arizona.edu

March 26, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

I foresee no conflicts in curriculum or related matters within the Indige-FEWSS GIDP with the establishment of the Ecosystem Genomics GIDP. In fact, I expect this program will complement ours and will further connect graduate programs on the University of Arizona campus.

Please contact me at kchief@arizona.edu or 520-247-6030 if you have any questions.

Sincerely,

(Lorenta Com

Karletta Chief, Associate Professor & Extension Specialist

Harshbarger Building, Room 122 1133 E. James E. Rogers Way P.O. Box 210011 Tucson, AZ 85721-0011 Office: 520-621-7120 Fax: 520-621-1422

March 16, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

We anticipate that one of our graduate courses will be recommended to GIDP students as an optional course for their minor or certificate:

ATMO 536A: Fundamentals of Atmospheric Sciences

I foresee no conflicts in curriculum or related matters within my department with the establishment of this GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate program with other participating graduate programs on the University of Arizona campus.

Thomas Meixner, Professor and Head

1177 E. Fourth Street P.O. Box 210038 Tucson, AZ 85721-0038 Tel: (520) 621- 1646 Fax: (520) 621- 1647 http://environmentalscience.cals.arizona.edu/

March 15, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

We anticipate that several of our graduate courses will be recommended to GIDP students as optional courses for their minor or certificate:

ENVS 508: Scientific Writing for Env., Ag., & Life Sciences ENVS 510: Microbial Biogeochemistry and Global Change ENVS 511: Environmental Metabolomics ENVS 515: Translating Environmental Science ENVS 525: Environmental Microbiology ENVS 567: Introductory Statistics & Multivariate Statistics with R

I foresee no conflicts in curriculum or related matters within my department with the establishment of this GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate program with other participating graduate programs on the University of Arizona campus.

Sincerely,

Jon Chorover

Professor and Head Department of Environmental Science

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066 Department of Entomology College of Agriculture and Life Sciences Forbes Building, Room 410 P.O. Box 210036 Tucson, AZ 85721-0036 PH: (520) 621-1151 FAX: (520) 621-1150

April 11, 2021

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate. I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

There is considerable overlap of interests between faculty of this proposed GIDP minor and those of our faculty and students in our program, the GIDP in Entomology & Insect Science. We expect that several EIS students will elect the GIDP in Ecosystem Genomics as their minor. We already have an incoming EIS student who will be a fellow in the inaugural NSF supported BRIDGES program cohort.

We also anticipate that one of our graduate courses will be recommended to GIDP EG students as an optional course for their minor or certificate: **EIS 544: Insect Ecology**

The class is regularly offered as part of our existing curriculum and seats are available. I foresee no conflicts in curriculum or related matters within our graduate program with the establishment of this additional GIDP, especially as I understand the plan for the sustainability of this GIDP Minor will not draw from the current GIDP budget.

Instead, I expect this minor will further connect our graduate program with other participating graduate programs on the University of Arizona campus.

Martha S. (Molly) Hunter Professor, Department of Entomology, and Department of Ecology & Evolutionary Biology Chair, Graduate Interdisciplinary Program in Entomology & Insect Science mhunter@ag.arizona.edu +1-520-621-9350

Ecology & Evolutionary Biology College of Science University of Arizona P.O. Box 210088 Tucson, Arizona 85721-0088 (520) 621-1588 FAX: (520) 621-9190 http://eebweb.arizona.edu

April 8, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

We anticipate that several of our graduate courses will be recommended to GIDP students as optional courses for their minor or certificate:

ECOL 553: Functional and Evolutionary Genomics ECOL 565: Phylogenetic Biology ECOL 578: Global Change ECOL 580: Mathematical Models in Biology ECOL 600A: Fundamentals of Evolution

I foresee no conflicts in curriculum or related matters within my department with the establishment of this GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate program with other participating graduate programs on the University of Arizona campus.

Dr. Michael Worobey Department Head Louise Foucar Marshall Science Research Professor Ecology and Evolutionary Biology

Data Science Institute BSRL 200A P.O.Box 210077 (520) 621-4064 FAX: (520) 621-1364

March 30, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed **Graduate Interdisciplinary Program in Ecosystem Genomics**, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

I foresee no conflicts in curriculum or related matters within the Data Science Institute with the establishment of the Ecosystem Genomics GIDP. In fact, I expect this program will complement our ongoing training and learning activities and will further connect graduate programs on the University of Arizona campus. Students trained in computational and statistical methods in Ecosystem Genomics will also provide valuable capacity of trained students for our campus.

Please feel free to contact me if you need any further information, we look forward to working closely with the Ecosystems Genomics GIDP

Nirav Merchant Director, UA Data Science Institute (Data 7) Co-PI NSF CyVerse University of Arizona

Shantz, Room 403 1177 E 4th Street PO Box 210038 Tucson, AZ 85721-0038

> Tel: 520-621-3691 Fax: 520-621-3963

http://be.arizona.edu

April 12, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Dean Carnie,

I am writing to express my support for the newly proposed Graduate Interdisciplinary Program (GIDP) in Ecosystem Genomics, which will offer both a PhD Minor and a Graduate Certificate.

I understand that these tracks will consist of 12 credit hours over four semesters and will provide interdisciplinary training at the interface of ecosystem sciences and genomics.

We anticipate that two of our graduate courses will be recommended to GIDP students as optional courses for their minor or certificate:

BE 534: Biosystem Analytics BE 587: Metagenomics: From Genes to Ecosystems

I foresee no conflicts in curriculum or related matters within my department with the establishment of this GIDP. In fact, I expect this minor to appeal to incoming and current students in our program, and further connect our unit and graduate programs with other participating graduate programs on the University of Arizona campus.

K. L. Fondel-Pre

Kathryn L. Farrell-Poe Head, Specialist, and Professor

Office of the Director ENR-2 – Room N333 1064 Lowell Street Tucson, AZ 85721 Telephone: (520) 626-0058 Fax (520) 621-8801 http://snre.arizona.edu/

April 7, 2021

Dr. Andrew Carnie, PhD Dean, Graduate College University of Arizona Administration 322 PO Box 210066 Tucson, AZ 85721-0066

Dear Andrew:

This letter serves to confirm our support for the proposed Graduate Interdisciplinary Program in Ecosystem Genomics, especially with regard to the Ecosystem Genomics seminar (RNR 696A).

The School of Natural Resources and the Environment is listed as the home unit for the Ecosystem Genomics seminar (RNR 696A), a required course included in the initial curriculum listing for the minor. The seminar, currently taught by Dr. Laura Meredith, is regularly offered as part of our existing curriculum and seats are available.

Sincerely,

Willem J.D. van Leeuwen, Interim Director and Professor School of Natural Resources and the Environment

