Computer Science and Engineering Undergraduate Program Overview

Sharon ONeal
sharononeal@arizona.edu
520-822-4040

Computer Science and Engineering Degree Objectives

> MEET THE INCREASING INDUSTRY DEMANDS FOR HIGHLY SKILLED SOFTWARE/COMPUTING TALENT

- Develop a 120-unit ABET accredited Computer Science and Engineering degree program to begin in 2023/2024
- Accreditation thru ABET's Computing Accreditation Commission (CAC) and/or the Engineering Accreditation Council (EAC)
- Targeting a Fall 2023 start for the BS degree
- Separate proposals have been developed include for MS and PhD in CSE in 2024/2025
- Serve local, state, and national increasing needs in engineering computing talent related to economic development and national security
- Aligned with Arizona's New Economic Initiative
- Support and enable the university's growth goals / initiatives
- Increase student enrollments
- Increase research opportunities and collaborations

Workforce Demands Continue to Go Unmet for SW and Computing Professionals

- The market demand for those trained in engineering computing disciplines is projected to have significant growth in both the near- and long-term futures.
- The growth in computing-related jobs up to 2021 regionally and nationally (see graph to right)
- The BS CSE program will serve both local, state, and national needs related to employment, economic development, and national security.
- Among the most important in support of the ongoing fourth industrial revolution and in close alignment with Arizona's New Economy Initiative.

Summary of AAU Universities with
Computer Science and Computer Science and Engineering Degree Programs
in Different Colleges (including Engineering)

Peer / AAU	University	College	Degree Type	Degree Name	Accreditation	Min. Units	Total Enrollment (2020)**
AAU	University of California - Berkeley	College of Engineering	BS	Electrical Engineering and Computer Science (EECS)	Unclear (ABET through 2019)	120	1519
		College of Letters and Science	BA	Computer Science	None	119	1465
Peer / AAU	University of California - Davis	College of Engineering	BS	Computer Science and Engineering	$\begin{aligned} & \text { EAC - } 1987 \\ & \text { CAC - } 1995 \\ & \hline \end{aligned}$	144	349
		College of Letters and Science	BS	Computer Science	None	144?	931
Peer / AAU	University of California - Los Angeles	Henry Samueli School of Engineering and Applied Science	BS	Computer Science	Claims to be EAC and CAC		
		Henry Samueli School of Engineering and Applied Science	BS	Computer Science and Engineering	CAC and EAC Accredited		
Peer / AAU	University of Florida	Herbert Wertheim College of Engineering	BS	Computer Science (EG-CSE)	None	120	758
		College of Liberal Arts and Sciences	BS	Computer Science (CSC)	None	120	464
Peer / AAU	University of Illinois -Urbana-Champaign	Grainger College of Engineering	BS	Computer Science	CAC - 2000	128	2001
		Grainger College of Engineering	BS	Mathematics and Computer Science	UNK	120	UNK
		Grainger College of Engineering	BS	Statistics and Computer Science	UNK	120	UNK
		College of Liberal Arts and Sciences	BS	CS +X Programs (where $\mathrm{X}=$ several different disciplines)	None	120	UNK
Peer/AAU	University of lowa	College of Liberal Arts and Sciences	BA	Computer Science	None	120	UNK
		College of Liberal Arts and Sciences	BS	Computer Science	None	126	UNK
		Dual Program: CLAS \& Engineering	BSE	Computer Science and Engineering	$\begin{aligned} & \text { EAC - } 2018 \\ & \text { CAC - } 2018 \\ & \hline \end{aligned}$	129	UNK
AAU	University of Michigan	College of Engineering	BSE	Data Science	CAC - 2002	128	100
		College of Engineering	BSE	Computer Science	CAC-2002	128	1261
		College of Literature, Science and the Arts	BS	Computer Science	None	120	542
Peer / AAU	The Ohio State University	College of Engineering	BS	Computer Science and Engineering	$\begin{aligned} & \hline \text { CAC - } 1998 \\ & \text { EAC - } 1998 \\ & \hline \end{aligned}$	126	1754
		College of Engineering	BA	Computer and Information Science	None	122	617
		College of Engineering	BS	Computer and Information Science	None	124	
Peer / AAU	University of Minnesota - Twin Cities	College of Science and Engineering	BS	Computer Science	None	120	1104
		College of Liberal Arts and Sciences	BA	Computer Science	None	120	UNK

ABET CAC Accreditation Curriculum Criteria

 (Criterion 5)$\left.\left.\begin{array}{|c|l|}\hline \text { Units } & \text { Description } \\ \hline \begin{array}{c}\text { Basic } \\ \text { requirements } \\ (30)\end{array} & \begin{array}{l}\text { Up-to-date coverage of fundamental and } \\ \text { advanced computing topics that provide } \\ \text { breadth and depth in computing (included in } \\ \text { the } 40 \text { units below) }\end{array} \\ \hline \text { Computer } & \text { - Algorithms and complexity, CS theory, } \\ \text { Science } \\ \text { Specific } \\ \text { Requiremming languages and software } \\ \text { (40) }\end{array} \quad \begin{array}{l}\text { - Substantial coverage of at least one } \\ \text { - general purpose programming language }\end{array}\right\} \begin{array}{l}\text { Computer architecture and organization, } \\ \text { information management, networking and } \\ \text { communications, operating systems and } \\ \text { parallel and distributed computing }\end{array}\right\}$

Many courses are duplicated across
 the CS and CSE programs

CAC/EAC accredited programs:

- Include more advanced math, physics or natural science courses

Summary Comparison of Peer Institutions

with CS and CSE Degree Programs

- More prescriptive and more "required" courses (less electives)
- More interdisciplinary focus
- Require a major capstone course
- Software application/product focus

Non-accredited programs:

- Give the student more options / flexibility in coursework and electives
- Some are more theory-based
- Broader focus across diverse liberal arts and sciences
- Some have fewer total degree units required

Computer Science and Engineering BS Degree $=\mathbf{1 2 0}$ units

Course Number			
Course Name			Units
New / Exists or Equivalent Courses			
GenEd	General Education Courses		
CSE 101	Programming I	4	N
ENGL 101	English Composition I	3	E
ENGL 102	English Composition II	3	E
MATH 122A/B	Calculus I	5	E
MATH 129	Calculus II	3	E
CSE 201	Programming II	3	N
Science	Natural Science / Lab	4	E
Science	Exploring Perspectives Natural Science \#2	3	E
CSE 303	Fundamentals of Computer Architectures	3	N
CSC 355	Analysis of Discrete Structures (for Engr)	3	E
General Electives	General Electives (could be used for Minor)	$\mathbf{1 8}$	E

Different Courses (Additional Math or Interdisciplinary Engr Focused)

ENGR 102	Intro to Engineering	3	E
MATH 243	Discrete Math	3	E
ECE 274A	Digital Logic	4	E
SIE 305	Intro to Engineering Probability and Statistics	3	E
CSE 301	Data Management	3	N
SFWE 302	Software Architecture and Design	3	E
MATH	Math Elective	3	E
CSE 302	Theory of Computation	3	N
CSE 401	Operating System Design	1	N
ECE 311	Engineering Ethics	3	E
ENGR 498 A	Interdisciplinary Capstone I	4	E
SFWE 402	Software DevSecOps	3	E
ENGR 498B	Interdisciplinary Capstone II	9	E
UD Computing Elective	Upper Division Computing Electives		

Computer Science BS Degree $=120$ units

Course Number	Course Name	Units	New / Exists
Similar or Equivalent Courses			
GenEd	General Education Courses		
CSC 110	Intro to Computer Programming I	4	E
ENGL 101	English Composition	3	E
ENGL 102	English Composition II	3	E
MATH 122 A/B	Calculus I	5	E
MATH 129	Calculus II	3	E
CSC 120	Intro to Computer Programming II	4	E
Science	Supporting Science \#1	4	E
Science	Supporting Science \#2	4	E
CSC 252	Computer Organization	3	E
CSC 345	Analysis of Discrete Structures	3	E
Electives	Other Electives (choose 4)	12	E
Different Courses (Traditional Comp Sci)			
MATH 120R	Pre-Calculus	4	E
Language	1st Semester Second Language	4	E
Language	2nd Semester Second Language	4	E
CSC 210	Software Development	4	E
CSC 245	Intro to Discrete Structures	3	E
CSC 335	Object Oriented Programming	3	E
CSC 352	Systems Programming \& Unix	3	E
CSC 335	Object Oriented Programming	3	E
CSC Paradigms	CSC Paradigm Elective (Choose 1)		E
CSC 372	Comparative Programming Languages		E
CSC 422	Intro to Parallel and Distributed Programming	3	E
CSC 460	Database Design		E
CSC T\&W	CSC Theory and Writing Elective (Choose 1)		E
CSC 455	Algorithms	3	E
CSC 450	Algorithms in Bioinformatics		E
CSC 473	Automata, Grammars, \& Languages		E
CSC Sys	CSC Systems Elective (Choose 1)		E
CSC 452	Principles of Operating Systems	3	E
CSC 453	Compilers and System Software		E
Electives	Upper Division Electives - CSC 3XX or 4xx (Choose 3	9	E

AAU Member:

Other Universities with ABET / CAC /EAC Accredited
 CS or CSE Programs

- University of California Los Angeles
- University of Colorado
- Michigan State University
- Texas A\&M University

Non-AAU Member:

- University of Alabama
- Arizona State University
- Northern Arizona University

Collaboration Memo Signed by CoS and ENGR

7A The Universit
of Arizona

Prof. Greg Heileman
Vice Provost for Undergraduate Education

Re: Collaborations between COS and COE on BS-CSE degree
Dear Greg,
As you are aware, the College of Engineering (COE) is developing a BS - Computer Science and Engineering (CSE) program to be housed in the Department of Electrical and Computer Engineering
(ECE). The proposed program has a firm engineering foundation that is ABET CAC/EAC Compliant. It aims to broadden the University of Arizona's workforce development pipeline in direct response to industry needs and to provide a unique opportunity for students to develop knowledge of computer science and engineering by combining theory-based concepts with advanced engineerin
technologies and pedagogy to create solutions that address the grand challenges of the 215 t century and beyond.
We are grateful to our colleagues, Prof. Christian Sellherg serving as head of the department of Computer Science and Prof Michael Wu serving as head of Electrical and Computer Engineering, new BS-CSE program in COE and the existing BS-Computer Science (ESS-CS) program in the Colleg vo degree programs.

Introductory Program ming
CSE students will be required
(1) CSC 110 Introduction to Computer Programming I and CSC 120 Introduction to Computer Progromming II, or,
(2) CSE 101 Progromming / and CSE 201 Programming II.
tal approval of the instructors.

Computer Organization
Students are currently required to take CSC 252 Computer Organization. We plan to replace this with ECE 369 Fundamentols of Computer Architecture, or possibly a new course, CSE 303

```
Mata Structures
We plan to collaborate to develop new upper-division data structures courses, CSC 345 Analysis of Discrete Structures (for CS students) and CSC 355 Anolysis of Discrete Structures (for CSE students) Ths primes lava (from CSC 210), while CSC 355 assumes C (from ECE 275). It may be preferable to have two sections of a single course since this could make it simpler to keep their course contents ynced.
Ethics
We will require CS students to take ECE 311 Engineering Ethics. Currently, this is a 1 -unit course. We aim to explore the possibility of expanding this into a 3 -unit course
400-level Electives
Open the folloving CS classes to ECE student
CSC 452 Principles of Operating Systems
CSC 453 Compilers ond System Softwor
CSC 445 Algorithms
, Grammars, and Languoges
Web Development and Internet of Things
We believe it would be valuable for CS students to be exposed to topics on embedded systems. The nearest course for this is ECE 413 Web Development and the Internet of Things. However, the neorest tof this course is divided between Web Development and Embedded Systems, and we share a concern is that there may not be enough time to go into depth on either topic. To address these,
issues, we aim to explore the possibility of opening \(\operatorname{CSC} 337\) Web Programming, to ECE students, and focusing ECE 413 on embedded systems topics.
Future course development
\(C S\) and \(E C E\) agree to discuss the development of new courses open to both sets of students. Pepending on faculty interest, these courses could be ovnese dither by ECE or CS. Examples of
topics that would be of high interest and value to booth sets of students, including, but not limited to:
- Cryptography
Robotics
- Software testing
Functional programming
Quantum computation
- High-performance computing
Computer algebra
Thank you also for your guidance and leadership as we have developed this proposal. We ask that you circulate this summary to all and any committees who are interested, as the proposal is dvanced for review and approval.
```


C. Micheel Christian, Assoc deans, Liest etc

Debate Over Name of the Degree Program

Per email from Jim Baygents (2/13):

- In choosing a name, we are constrained somewhat by the meaning of computer engineering, which is a degree/discipline accredited by the Engineering Accreditation Commission of ABET.
- Computer Engineering is closely coupled to Electrical Engineering (Computer and Electrical are lumped together under the same program criteria ... and we offer a BS Electrical \& Computer Engineering).
- Computer Science degrees (that is, degrees containing the name Computer Science) are accredited by the Computing Accreditation Commission of ABET. The EAC and the CAC specify different student outcomes.

Five AAU-Public schools offer bachelor's degrees named "Computer Science and Engineering"

- Ohio State
- University of Iowa
- UC, Davis
- UC, Irvine
- UCLA

Four of these five are UA peers. Another eight schools (not AAU-P) offer bachelor's degrees named
"Computer Science and Engineering", viz.

- Bucknell
- MIT
- Santa Clara
- University of Toledo
- UC, Merced
- Connecticut
- Louisville
- Nevada, Reno

General Education (29 units)

- UNIV 101 - Introduction to Gen-Ed Experience (1 unit)
- Foundations - ENGL 101 and ENGL 102 - English Composition I and II (6 units)
- Foundations - MATH 129 (3 units)
- Exploring Perspectives - Artist (3 units)
- Exploring Perspectives - Humanist (3 units)
- Exploring Perspectives - Social Scientist (3 units)
- Exploring Perspectives - Natural Scientist (3 units)
- Building Connections - (9 units)
- UNIV 301 - General Education Portfolio (1 unit)

Major Core (46 units)

- ENGR 102 A/B - Introduction to Engineering (3 units)
- CSE 101 - Programming I (4 units) NEW
- CSE 201 - Programming II (3 units) NEW
- ECE 274A - Digital Logic (4 units)
- CSE 301 Data Management (3 units) NEW
- SIE 305 - Engineering Probability and Statistics (3 units)
- CSE 302 - Theory of Computation (3 units) NEW
- CSE 303 - Fundamentals of Computer Architecture (3 units) NEW
- ECE 311 - Engineering Ethics (1 unit)
- SFWE 302 - Software Architecture and Design (3 units)
- CSC 355 - Data Structures and Algorithms (3 units)
- SFWE 402 - Software DevSecOps (4 units)
- CSE 401 - Operating System Design (3 units) NEW
- ENGR 498A/B - Interdisciplinary Capstone (6 units)

Math and Sciences (18 units)

- MATH 122 A/B - Calculus I (5 units)
- MATH 129 - Calculus II (included in GenEd Foundations) (3 units)
- Math 243 - Discrete Math (3 units)
- MATH Elective (Linear Algebra, Number Theory, Numerical Methods, or Vector Calculus) (3 units)
- Lab Science (4 units)

Computing Electives (9 units)

Select 9 units of UD computing technical electives from other Engineering courses (i.e. ECE, SIE, or other applicable engineering courses), CSC or ISOC. See major advisor for course approval.

A preliminary list of acceptable UD technical computing electives include:

- ECE 330B Computational Techniques
- ECE 373 Object-Oriented Software Design
- ECE 413 Web Development and Internet of Things
- ECE 466 Knowledge System Engineering
- SFWE 301 Software Requirements Analysis and Test
- SFWE 401 Software Assurance
- SFWE 403 Software Project Management
- SIE 370 Embedded Computer Systems
- SIE 431 Simulation Modeling and Analysis

General Electives (18 units)

Projected

Enrollments and

New Resources
Needed (BS level only)
IV. Projected Enrollment for the First Five Years: The projected enrollment in the Computer Science Engineering BS degree program across all campuses is shown in the table below (note that the projections are extended to a 5-year period to be consistent with the extended financial analysis timeframe). The basis for these projections was derived by comparing enrollments at other AAU universities that have a dual Computer Science program in both their College of Engineering (or similar) and another college.

Degree	Year 1 $(2023 / 2024)$	Year 2 $(2024 / 2025)$	Year 3 $(2025 / 2026)$	Year 4 $(2026 / 2027)$	Year 5 $(2027 / 2028)$
BS	60	140	300	425	500

Projected Additional Resource Acquisition Plan (by Year) (On Campus + Online)						
						Total New Instructors Acquired Over $\mathbf{5}$ Years
Resource Type	$\mathbf{2 0 2 3 - 2 0 2 4}$	$\mathbf{2 0 2 4 - 2 0 2 5}$	$\mathbf{2 0 2 5 - 2 0 2 6}$	$\mathbf{2 0 2 6 - 2 0 2 7}$	$\mathbf{2 0 2 7 - 2 0 2 8}$	10
Tenured Track Faculty	4	2	2	2	0	1
PoP (On Campus)	1	0	0	0	0	2
Professor of Practice (Online)	0	0	1	1	0	2
Adjunct (On Campus)	0	0	1	1	0	2
Adjunct (Online)	0	0	1	0	0	1

Backup Information

New Courses Required

V. NEW COURSES NEEDED - using the table below, list any new courses that must be created for the proposed program. If the specific course number is undetermined, please provide level (i.e., CHEM 4 XX). Add rows as needed.

Course prefix and number (include crosslistings)	Units	Title	Prerequisites	Modes of delivery (online, inperson, hybrid)	Status*	Anticipated first term offered	Typically Offered (F, W, Sp, Su)	Dept signed party to proposal? (Yes/No)	Faculty members available to teach the courses
CSE 101	4	Programming I	None	online, in-person	D	Spring 2024	F, Sp	Yes	Dr Diana Saldana
CSE 201	3	Programming II	CSE 101	online, in-person	D	Fall 2024	F, Sp	Yes	Dr Diana Saldana
CSE 301	3	Data Management	CSE 201	online, in-person	D	Spring 2025	Sp	Yes	TBR (New Faculty)
CSE 302	3	Theory of Computation	Math 243	online, in-person	D	Fall 2025	F	Yes	TBR (New Faculty)
CSE 303	3	Fundamentals of Computer Architecture	ECE 274A	online, in-person	D	Fall 2025	F	Yes	TBR (New Faculty)
CSE 401	3	Operating Systems	$\begin{aligned} & \text { CSE } 201 \\ & \text { and CSE } \\ & 303 \end{aligned}$	online, in-person	D	Spring 2026	Sp	Yes	TBR (New Faculty)

[^0]
AA THE UNIVERSITY OF ARIZONA
 Collese of tengineering Sample 4 Year Plan

Semester 1		Semester 2		Semester 3		Semester 4	
Course prefix and number	Units						
ENGL 101	3	ENGL 102	3	MATH 243	3	SIE 305	3
ENGR 102	3	MATH 129	3	CSE 201	3	CSE 301	3
MATH 122 A/B	5	CSE 101	4	ECE 274A	4	CSC 355	3
Gen-Ed (Expl Persp (EP) Artist)	3	Science Natural w/Lab	4	Gen-Ed (EP Humanist)	3	SFWE 302	3
UNIV 101	1		Gen-Ed (EP Social Scientist)	3	MATH 313 or MATH 315	3	
Total	15	Total	14	Total	16	Total	15

Semester 5		Semester 6			Semester 7	Semester 8	
Course prefix and number	Units						
CSE 302	3	CSE 401	3	ENGR 498A	3	ENGR 498B	
CSE 303	3	UD Computing Elective 1	3	SFWE 402	4	UD Computing Elective 3	3
General Elective 1	3	General Elective 3	3	UD Computing Elective 2	3	General Elective 5	3
General Elective 2	3	General Elective 4	3	UNIV 301	1	General Elective 6	3
Gen-Ed (EP Natural Scientist)	3	Gen-Ed (Building Connections)	3	Gen-Ed (Building Connections)	3	Gen-Ed (Building Connections)	3
		ECE 311	1				
Total	15	Total	16	Total	14	Total	15

CoS Collaboration Agreement Summary

CSE students will be required to take two introductory programming classes. They can choose either:
(1) CSC 110 Introduction to Computer Programming I and CSC 120 Introduction to Computer Programming II, or,
(2) CSE 101 Programming I and CSE 201 Programming II.

A student can also choose to take CSC 110 and then CSE 201 or CSE 101 and then CSC 120, upon approval of the instructors.

Computer Organization

CS students are currently required to take CSC 252 Computer Organization. We plan to replace this with ECE 369 Fundamentals of Computer Architecture, or possibly a new course, CSE 303 Fundamentals of Computer Architecture, to minimize duplication.

Data Structures

We plan to collaborate to develop new upper-division data structures courses, CSC 345 Analysis of Discrete Structures (for CS students) and CSC 355 Analysis of Discrete Structures (for CSE students). The primary difference between these courses will be the coding language prerequisites: CSC 345 assumes Java (from CSC 210), while CSC 355 assumes C (from ECE 275). It may be preferable to have two sections of a single course since this could make it simpler to keep their course contents synced.

Ethics

We will require CS students to take ECE 311 Engineering Ethics. Currently, this is a 1-unit course. We aim to explore the possibility of expanding this into a 3 -unit course.
the university of arizona
College of Engineering

CoS Collaboration Agreement Summary (2 of 3)

400-level Electives

Open the following CS classes to ECE students:

- CSC 452 Principles of Operating Systems
- CSC 453 Compilers and System Software
- CSC 445 Algorithms
- CSC 473 Automata, Grammars, and Languages

Web Development and Internet of Things

We believe it would be valuable for CS students to be exposed to topics on embedded systems. The nearest course for this is ECE 413 Web Development and the Internet of Things. However, the content of this course is divided between Web Development and Embedded Systems, and we share a concern is that there may not be enough time to go into depth on either topic. To address these issues, we aim to explore the possibility of opening CSC 337 Web Programming, to ECE students, and focusing ECE 413 on embedded systems topics.

Future course development

CS and ECE agree to discuss the development of new courses open to both sets of students. Depending on faculty interest, these courses could be owned either by ECE or CS. Examples of topics that would be of high interest and value to both sets of students, including, but not limited to:

- Cryptography Functional programming
- Robotics Quantum Computation
- Software testing High-Performance Computing
- Program verification Information Privacy
- Computer Algebra

[^0]: ${ }^{*}$ In development (D); submitted for approval (S); approved (A)

