Executive Summary

Request for Authorization to Implement BS in Pharmaceutical Sciences

<table>
<thead>
<tr>
<th>Requested by</th>
<th>Department of Pharmacology and Toxicology in the College of Pharmacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Code</td>
<td>51.2010-Pharmaceutical Sciences</td>
</tr>
</tbody>
</table>

Purpose of Program

The UA Bachelor of Science in Pharmaceutical Sciences is a traditional, four year degree program that will provide undergraduate students comprehensive coursework, laboratory work, and experiential education in Pharmaceutical Sciences.

Currently no Arizona universities offer a BS in Pharmaceutical Sciences, despite the fact that the pharmaceutical industry represents a substantial source of jobs and economic output, representing over 800,000 U.S. employees, 17% of all U.S. research and development, and 1.2 trillion dollars in economic output (biopharmaceutical spotlight, www.selectusa.gov).

The University of Arizona College of Pharmacy has a long and successful history of educating and training pharmacists who provide state-of-the-art healthcare. The college also has a robust graduate education and training program in the disciplines of pharmacology, toxicology, drug discovery and development, pharmaceutics, and health outcomes. The proposed program represents the maturation of those successful programs and their extension to a new undergraduate major. The department and college anticipate producing highly qualified individuals seeking continued education in graduate and professional schools, as well as graduates who will be in demand for pharmaceutical and biotech companies.

The BS in Pharmaceutical Sciences degree program requires 120 units, including 33 units of upper division PCOL major coursework, 3 units of Foundations in Biochemistry, and 36 units of required science supporting coursework. Supporting coursework will serve as pre-major requirements. Students are required to complete the supporting coursework with a GPA ≥ 2.0 and complete an application and personal statement in order to declare/admit the major.

The overarching goals for the BPS program are to graduate students who will have the ability to:

a) demonstrate an understanding of chemical-biological interactions as related to current drugs and the discovery and development of new drugs;

b) demonstrate an understanding of the governmental regulation of the drug development process, including the demanding requirement for stringently controlled research;

c) apply the scientific method to address gaps in knowledge, through hypothesis formulation, data collection/analysis, and rational interpretation;
d) understand the techniques, skills, and modern tools in use by pharmaceutical science industry;
e) communicate effectively in written and oral presentation.

<table>
<thead>
<tr>
<th></th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>4th year</th>
<th>5th year</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year projected annual enrollment</td>
<td>30</td>
<td>85</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
</tbody>
</table>

Source(s) of Funding
- No new faculty needed to launch.
- Additional Support Needed:
 - Program Coordinator
 - Academic Advisor
 - Exploring employing graduate TAs

Funding Sources:
- Initial reallocation of existing college funds
- College Tuition

Approvals:
- ABOR: 11/18/16
- Undergraduate Council: 11/7/17
- Graduate Council: N/A
- CAAC: 11/3/17 (e-vote)
- Provost’s Council
- Faculty Senate
College of Pharmacy (COP) Response to Undergraduate Council (UGC) Discussion of Bachelor of Science in Pharmaceutical Sciences Proposal

UGC Comment: Dr. Del Casino (Paraphrased): Required courses are substantial, overall the program has few units that students are free to apply to coursework of their choice.
COP Reply: We edited the proposal to create 10 units of coursework that students can use for any elective course of their choice. Regarding the existing required courses, those courses were arrived at through a series of meetings over this past summer with COP faculty and faculty from other colleges. This fall we further vetted these courses with representatives from the Colleges of Law, Science, Medicine, Agriculture and Life Sciences, and Public Health, as well as with executives in the pharmaceutical and biotech arenas. We feel strongly that the required courses that we have built into this curriculum provide essential components that students need to understand how chemicals that interact with biology can become drugs. We may at some point decide that the curriculum could be streamlined, but this is the curriculum that our faculty have carefully considered and agreed upon for the launch of the program.

UGC Comment: Dr. Del Casino (Paraphrased): There is an insubstantial difference between a 2.5 GPA threshold in required supporting coursework and a 2.0 GPA. If you want a stringent requirement use a 3.0 GPA.
COP Reply: We think that a 3.0 GPA is excessively restrictive. We are willing to defer to Dr. Del Casino’s view on this and allow students with the minimum 2.0 GPA admittance to the major (reflected in the edited document), but in the initial cohorts we will closely track the correlation between prereq. course GPA and performance in the major. Should our data support raising the admission threshold GPA, we will request that modification to our program.

UGC Comment: Dr. Burd (Paraphrased): Pre-Majors should not be used.
COP Reply: We discussed this option with several individuals knowledgeable in undergraduate science programs and heard a range of opinions. In fact, among the UGC members discussing our proposal there was a range of opinions on structuring a Pre-Major into the program. We were swayed by programs like Physiology, where the use of this structure seems to have improved the preparedness of students entering the major as well as making their progress to graduation more efficient. We think that retaining the Pre-Major is the best option for our proposed program at this time.

DETAIL ERRORS POINTED OUT BY UGC, CORRECTED IN THIS DOCUMENT

Table 6: Peer Comparison Chart; “Upper division units required to complete degree”
Revised from 50 units to 40 units to reflect 10 units of electives with restrictions removed.

Table 6: Peer Comparison Chart; “List any special requirements to declare or gain admission to this major”
Changed GPA in required supporting coursework from ≥ 2.5 to ≥ 2.0

Section VI-A.
Corrected faculty list to include Biochem 384 (Miesfeld). Now required courses match listed faculty. Added Miesfeld’s bio to the CV Appendix material.

General edits
Corrected inconsistencies in text regarding PCOL 195
Corrected PSIO 380 course title
Corrected Tier 2 general education courses listed per UA required Tier 2 areas
Added clarifying text to the Minimum # of units required in the major, and to the Minimum # of upper division units required in the major
Added MATH 125 to the comparison chart (the chart had only listed the 122A/B option).
PCOL 460 course listing corrected to PHCL 460 (new courses list)
NEW ACADEMIC PROGRAM – REQUEST FORM

I. PROGRAM NAME, DESCRIPTION AND CIP CODE

A. PROPOSED PROGRAM NAME AND DEGREE(S) TO BE OFFERED – for PhD programs indicate whether a terminal Master’s degree will also be offered.

 Bachelor of Science in Pharmaceutical Sciences (BSPS)

B. CIP CODE – go to the National Statistics for Education web site (http://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55) to select an appropriate CIP Code or contact Pam Coonan (621-0950) coonan@email.arizona.edu for assistance.

 51.2010-Pharmaceutical Sciences

C. DEPARTMENT/UNIT AND COLLEGE – indicate the managing dept/unit and college for multi-interdisciplinary programs with multiple participating units/colleges.

 Department of Pharmacology and Toxicology
 College of Pharmacy

 Campus and Location Offering – indicate by highlighting in yellow the campus(es) and location(s) where this program will be offered.

 UA South Campus
 Sierra Vista
 Douglas
 Mesa
 Pima CC East
 Pinal County
 Santa Cruz
 UA Science and Tech Park

 UA Main
 Tucson
 UA Downtown
 Phoenix Biomedical Campus
 Phoenix

 UA Online
 Online

 Distance Campus
 Chandler
 Paradise Valley
 Yuma
II. PURPOSE AND NATURE OF PROGRAM—Please describe the purpose and nature of your program and explain the ways in which it is similar to and different from similar programs at two public peer institutions. Please use the attached comparison chart to assist you.

The pharmaceutical sciences have evolved to include discovery, development, evaluation, monitoring and marketing of drugs to benefit patients and public health. Individuals trained in pharmaceutical sciences work across the globe in industry, for drug regulatory authorities, biotech companies, and clinical research organizations to name just a few. Pharmaceutical science has often been interpreted to be a foundation of medical pharmacy training, but it is emerging as a discrete field with a dedicated curriculum that is foundational to new drug design, development, and delivery to safely treat human disease.

The UA Bachelor of Science in Pharmaceutical Sciences (BSPS) is a traditional, four-year degree program that will provide undergraduate students comprehensive coursework, laboratory work, and experiential education in Pharmaceutical Sciences. Currently no Arizona universities offer a BSPS, despite the fact that the pharmaceutical industry represents a substantial source of jobs and economic output, representing over 800,000 U.S. employees, 17% of all U.S. research and development, and 1.2 trillion dollars in economic output (biopharmaceutical spotlight, www.selectusa.gov).

The University of Arizona College of Pharmacy has a long and successful history of educating and training pharmacists who provide state-of-the-art healthcare. The college also has a robust graduate education and training program in the disciplines of pharmacology, toxicology, drug discovery and development, pharmaceutics, and health outcomes. This proposal represents the maturation of those successful programs and their extension to an exciting new undergraduate major. We anticipate that the BSPS program will matriculate highly-qualified individuals who will seek continued education in graduate and professional schools, as well as graduates who will be in demand for pharmaceutical and biotech companies.

Taking advantage of the collaborative relationships that our faculty maintain with pharmaceutical/biotech companies, drug regulatory agencies, and the broader research community, the BSPS program also offers interested students an internship in the summer of their junior year. Alternatively, students can participate in directed research locally and/or complete a mentored capstone project at the UA.

III. PROGRAM REQUIREMENTS – list the program requirements, including minimum number of credit hours, required courses, and any special requirements, including subspecializations, subplans, theses, internships, etc.
Bachelor’s of Science in Pharmaceutical Sciences Curriculum

GENERAL EDUCATION

Natural Sciences requirement fulfilled in major coursework

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 101 and 102—Writing/Composition</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Substantial Math Strand</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tier 1 Gen Ed</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tier 2 Gen Ed</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Second Semester Language Proficiency</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

REQUIRED SUPPORTING COURSEWORK

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 102 and PHYS 181</td>
<td>Introductory Physics I and Introductory Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 151</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 152</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 241A/243A</td>
<td>Lectures in Organic Chemistry and Organic Chemistry Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 241B/243B</td>
<td>Lectures in Organic Chemistry and Organic Chemistry Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>MCB 181R/L</td>
<td>Introductory Biology I and Introductory Biology Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>ECOL 182R/L</td>
<td>Introductory Biology II and Introductory Biology II Lab</td>
<td>4</td>
</tr>
<tr>
<td>MIC 205A/L</td>
<td>General Microbiology and Biology of Microorganisms Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PSIO 380</td>
<td>Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

REQUIRED MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 384</td>
<td>Foundations in Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 305</td>
<td>Scientific Writing: Papers to Proposals to Drug Information</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 310</td>
<td>Drug Approval: The 3 Billion Dollar Bet</td>
<td>2</td>
</tr>
<tr>
<td>PCOL 350</td>
<td>ADME: How the Body Changes Drugs</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 360</td>
<td>Pharmacology: How Drugs Change the Body</td>
<td>5</td>
</tr>
<tr>
<td>PCOL 390</td>
<td>Biomarkers: Analysis of Drug Effect and Toxicity</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 410</td>
<td>Integrated Medicinal Chemistry & Lab</td>
<td>5</td>
</tr>
<tr>
<td>PCOL 440</td>
<td>Rigor and Reproducibility: Bridging Academia and Pharma</td>
<td>2</td>
</tr>
<tr>
<td>PCOL 455</td>
<td>Drug Delivery Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHCL 460</td>
<td>Designing Drugs: From Chemistry to Cure (Lecture & Lab)</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 470</td>
<td>Pharmacogenomics: Predicting a Patient's Future</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>BIOC 565*</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>MCB 425</td>
<td>Cancer Discoveries</td>
<td>4</td>
</tr>
<tr>
<td>MCB 573*</td>
<td>Recombinant DNA methods and applications</td>
<td>4</td>
</tr>
<tr>
<td>PHPM 310</td>
<td>Health Care in the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>IMB 567*</td>
<td>Cancer Immunology and Immunotherapy</td>
<td>3</td>
</tr>
<tr>
<td>LAW 452</td>
<td>Health Law</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 301</td>
<td>Bioethics in Drug Clinical Trials</td>
<td>1</td>
</tr>
<tr>
<td>PCOL 395</td>
<td>The Chemical Environment, Environmental Exposures, and Human Disease</td>
<td>1</td>
</tr>
<tr>
<td>PCOL 430</td>
<td>Proteins and Nucleic Acids as Drug Targets</td>
<td>3</td>
</tr>
<tr>
<td>PCOL 493</td>
<td>Internship in Pharmaceutical Sciences</td>
<td>6</td>
</tr>
<tr>
<td>PCOL 498</td>
<td>Senior Capstone Project</td>
<td>1-3</td>
</tr>
<tr>
<td>PCOL 499</td>
<td>Independent Study</td>
<td>1-6</td>
</tr>
<tr>
<td>PHCL 442</td>
<td>Human Performance Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>PHCL 445</td>
<td>Drugs of Abuse</td>
<td>3</td>
</tr>
</tbody>
</table>

*A senior may register for a graduate course for either undergraduate or graduate credit with approval from the course instructor and the major advisor. Students may use a graduate course to meet undergraduate requirements. However, students cannot enroll in a 500-level course and receive 400-level credit for it. The Registrar will not process the graduate course enrollment unless the senior has a grade-point-average (GPA) of 3.0 or better on all University Credit and is proceeding toward graduation as directly as possible.
Table 6 Peer Comparison Chart of Majors

Bachelor of Science in Pharmaceutical Sciences (BSPS) at the University of Arizona

<table>
<thead>
<tr>
<th>Description of major</th>
<th>Proposed UA BSPS</th>
<th>Peer 1: The Ohio State University</th>
<th>Peer 2: U. California Irvine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently enrolled students</td>
<td>The Bachelor of Science in Pharmaceutical Science (BSPS) is a traditional, four-year degree program that will inform students about the underlying biology of disruptions in health that cause disease; mechanisms of drug action; drug and drug product design; and pharmaceutical evaluation with a heavy emphasis on US regulatory aspects of manufacturing and controls, drug discovery, clinical research, and post-approval drug surveillance. We will also provide instruction in pharmacology including pharmacokinetics and toxicology, which are essential for drug or new compound exploration and analysis. Because healthcare and pharmaceutical products will soon consume nearly one-fifth of the US economy, and because it is one of the most highly-regulated industries, graduates of our rigorous and relevant program will be in high demand, representing a specific and desired talent in the science sector.</td>
<td>468</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>The Bachelor’s of Science in Pharmaceutical Sciences (BSPS) is a highly unique undergraduate degree program that delivers unsurpassed preparation for careers in a variety of biomedical professions. In the program, students are able to pursue this degree through one of two pathways, enabling them to focus in areas that would be most relevant to their post-baccalaureate goals. There are two pathways—healthcare and drug discovery and development. In learning the disciplines of medicinal chemistry, pharmaceutics, pharmacology, and pharmaceutical administration, BSPS students will study the areas of drug discovery, delivery, action and therapy. Students will also have the opportunity to engage in clinical-, laboratory-, and community-based research experiences.</td>
<td>The Department of Pharmaceutical Sciences offers undergraduate students unparalleled training for future careers in pharmacy, medicine, and biomedical research. Our innovative, rigorous curriculum integrates concepts from biology, chemistry, chemical engineering, pharmacology and physiology. Alumni pursue exciting professional opportunities that improve our society’s health and well-being. Pharmaceutical scientists are rapidly changing the field of drug discovery and development. Graduates of our program are well qualified to seek employment in the public and private sectors, or to pursue graduate degrees such as a PhD, MD, or PharmD.</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Peer Comparison Chart of Majors

Bachelor of Science in Pharmaceutical Sciences (BSPS) at the University of Arizona

<table>
<thead>
<tr>
<th>Target careers</th>
<th>Graduates of the BSPS program will be prepared for graduate education, graduate professional education or a health-related career. The pharmaceutical industry offers career opportunities in sales and marketing, drug research and development, quality assurance, and professional services.</th>
<th>Research facilities Pharmaceutical and biotechnology companies Universities Government agencies (FDA/NIH) Drug analysis, drug manufacturing, medicine marketing, or pharmaceutical sales Or Subsequent graduate training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total units required to complete degree</td>
<td>120</td>
<td>121</td>
</tr>
<tr>
<td>Upper-division units required to complete degree</td>
<td>42</td>
<td>(Starting fall, year 3: OSU has no 300/400 numbering system) 33 major units; 27 general ed requirements</td>
</tr>
<tr>
<td>Foundation courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English composition</td>
<td>NO course numbers given Writing I, II (6 units)</td>
<td>NO course numbers given Writing or Humanities (8 units)</td>
</tr>
<tr>
<td>Foreign language</td>
<td>NO course numbers given Foreign Language I, II, III (9 units total)</td>
<td>Not required/mentioned</td>
</tr>
<tr>
<td>Math</td>
<td>MATH 1150 and 1151 (10 units total)</td>
<td>MATH 2A, B, D or Stats (12 units total)</td>
</tr>
<tr>
<td>General education requirements</td>
<td>NO course numbers given Historical Study (3 units) Arts (3 units) Literature (3 units)</td>
<td>NO course numbers given/no course titles specified Gen Ed Course (35 units, academic quarter-based credits)</td>
</tr>
</tbody>
</table>

- Target careers:
 - Pharmaceutical industry (research, quality control, sales/marketing), Biotechnology, Government (FDA, CDC), Health insurance providers
 - Or Post-bacc. education at the professional or graduate level.

- Foundation courses:
 - ENGL 101—Writing/Composition I (3 units)
 - ENG 102—Writing/Composition II (3 units)
 - Language (8 units total)
 - Substantial Math Strand
 - Tier 1 Gen Ed (12 units) as follows—Individuals & Societies (two 150 courses from 150 A, B and C)
 - Traditions & Cultures (two 160 courses from 160 A, B, C, and D)
 - Historical Study (3 units)
 - Arts (3 units)
 - Literature (3 units)

- Research facilities:
 - Pharmaceutical and biotechnology companies
 - Universities
 - Government agencies (FDA/NIH)
 - Drug analysis, drug manufacturing, medicine marketing, or pharmaceutical sales
 - Or Subsequent graduate training
<table>
<thead>
<tr>
<th>Natural Sciences (satisfied by curriculum)</th>
<th>Cultures and Ideas (3 units)</th>
<th>Social Science (6 units total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2 Gen Ed (9 units)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individuals & Societies (one course)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities (one course)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Sciences (satisfied by curriculum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arts (one course; 3 units)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity (one course from Tier 1 or 2 that satisfies this requirement)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Pre-major? (y/n). If yes, indicate coursework. | Yes. Completion of Required Supporting Coursework (See Table above). | No | No |

<p>| List any special requirements to declare or gain admission to this major (completion of specific coursework, minimum GPA, interview, application, etc.) | Completion of required supporting coursework with GPA ≥ 2.0. Completion of application. | Freshmen admitted to the university directly enroll in the major. Transfer students wishing to major in pharmaceutical sciences must first apply to and be accepted to Ohio State as an undergraduate student. Upon successful completion of the prerequisite courses and requirements, a student may then request a transfer to the College of Pharmacy. | Cumulative GPA of 2.5 Most recent quarterly GPA of 2.5 Course Grades 3.0 minimum GPA for all UCI courses taken that count toward the major requirements. 3.0 minimum GPA for all transfer courses taken that count toward the major requirements. Lower division science and math coursework must be completed with a C- or better. PHRMSCI 42 and 76 require a D- and a C- or better, respectively. |</p>
<table>
<thead>
<tr>
<th>Major requirements</th>
<th>Minimum # of units) required in major</th>
<th>Minimum # of upper-division units required in the major</th>
<th>Minimum # of residency units to be completed in the major</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72 units : 36 pre-major and 36 major</td>
<td>40, includes pre-major 36, without pre-major</td>
<td>Minimum 30 residency units to be completed; minimum 18 residency units within major courses</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>38</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>167–173 (academic quarter-based credits)</td>
<td>47 (academic quarter-based credits)</td>
<td>N/A</td>
</tr>
<tr>
<td>Required supporting coursework (courses that do not count towards major units) and major GPA, but are required for the major). Courses listed must include subject code, units), and title.</td>
<td>MATH 122 A/B or MATH 125 Functions for Calculus/First-Semester Calculus (3-5 units) PHYS 102 & 181 Introd. Physics I and Introd. LAB (4 units) CHEM 151 General Chemistry I (4 units) CHEM 152 General Chemistry II (4 units) CHEM 241A/243A Lectures in Organic Chemistry and Organic Chemistry Laboratory I (4 units) CHEM 241B/243B Lectures in Organic Chemistry and Organic Chemistry Laboratory II (4 units) MCB 181R/L Introductory Biology I and Introductory Biology Laboratory I (4 units) ECOL 182R/L Introductory Biology II and Introductory Biology II Lab (4 units) MIC 205A/L General Microbiology and Biology of</td>
<td>CHEM 1210 GEN CHEM I and LAB (5 units) CHEM 1220 GEN CHEM II and LAB (5 units) CHEM 2510/2540 ORGANIC I and LAB (6 units) Biology 1113 GEN BIOLOGY I (4 units) CHEM 2520/2550 ORGANIC II and LAB (6 units) Biology 1114 GEN BIOLOGY II (4 units) PHY 1200 PHYSICS I and Lab (5 units) EEBOB 2520 PHYSIOLOGY and Lab (3 units) Physics 1201 PHYSICS II (5 units) BIO SCI 93,94 GEN BIOLOGY I (8 units) CHEM 1A,1B GEN CHEM I (8 units) CHEM 1C, 1LC GEN CHEM II and LAB (6 units) BIO SCI 97,98,99 GEN BIOLOGY II (12 units) CHEM 51A, 51B, 1LB,1LD ORGANIC I and LAB (12 units) CHEM 51C, 51LC ORGANIC II and LAB (6 units) BIO SCI 194S Ethics/Safety—(1 unit) PHYSICS 3A PHYSICS I (4 units) PHYSICS 3A,3B,3C 3LB, 3LC PHYSICS I and Lab (15 units)</td>
<td></td>
</tr>
</tbody>
</table>
| Major/Degree requirements | Microorganisms Laboratory (4 units) | PSIO 380 Fundamentals of Human Physiology (4 units) | Pharmacy 1100 Survey course (1 unit)
Pharmacy 2100 Careers in Pharmaceutical Sciences (0.5 units)
Pharmacy 2101 Career Development in Pharmaceutical Sciences (0.5 units)
Pharmacy 2500 Drug Discovery, Development, and Delivery (3 units)
Pharmacy 3200 Biochemistry for the Pharmaceutical Sciences (5 units)
Pharmacy 3500 Ethics and Professionalism in the Pharmaceutical Sciences (2 units)
Pharmacy 4000 Integrated Pharmaceutical Sciences I (5 units)
Pharmacy 4010 Integrated Pharmaceutical Sciences II (5 units)
Pharmacy 4600 Pharmaceutical Sciences Laboratory (2 units)
Pharmacy 4610 Experimental Techniques in Drug Discovery (3 units) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship, practicum, applied course</td>
<td>Optional: If chosen, complete 6 units at selected industry partner.</td>
<td>Not required.</td>
<td>Offered at various sites but not required.</td>
</tr>
</tbody>
</table>
Program Requirements – Use the comparison chart to explain how your requirements are similar to and different from the two programs at the two public peer institutions to which you compared your program in Section II.

Required Supporting Coursework:

The core of pharmaceutical sciences is an understanding of how interactions between chemicals and biological molecules can alter biology and physiology. This core is reflected in the supporting coursework from the UA BSPS and the two comparison programs. With an emphasis on chemistry, physics, biology, and physiology, the required supporting courses were structured to provide a foundation for the pharmaceutical science-intensive coursework. One difference in the UA program is the requirement for a basic microbiology course, reflecting our view that finding better drugs to fight increasingly drug-resistant and newly emerging infectious diseases will be an increasingly important global challenge for the pharmaceutical and biotech industries.

Required Major Coursework:

Content shared among the three comparison programs also includes the basic approach to chemical design and formulation (e.g., liquid, solid, oral, injectable, carriers, etc.) of drugs. The UA program covers this in three courses: a survey drug design and development course, a pharmaceutics course, and an advanced drug design and development course.

A second common content area details:

- How the body acts as a selective redistribution system to relocate a drug from its initial administration site in the body to various human tissues and compartments.
- How the body acts as a chemical reactor system to perform chemical reactions on drugs, creating new chemical structures that can have dramatically different therapeutic activities.

<table>
<thead>
<tr>
<th>requirements. (Yes/no. If yes, provide description.)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior thesis or senior project required (Yes/No)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Additional requirements (provide description)</td>
<td>None.</td>
<td>None.</td>
</tr>
<tr>
<td>Minor (specify if optional or required)</td>
<td>None required</td>
<td>None required</td>
</tr>
</tbody>
</table>

Note: comparison of additional relevant programs may be requested.
• How the body acts as a chemical removal system, clearing drug and drug derivative molecules out of the body into waste liquids and solids that are discharged from the body.

All three programs also include pharmacology, the science that integrates the drugs, their underlying chemistry, the perturbed physiology within diseases, the mechanism through which drug molecules change that physiology for the better, and how intervening with drugs can sometimes result in unintended harmful effects.

Contrasting the programs: Distinguishing the UA BSPS

In our assessment of existing BSPS programs in the U.S. we concluded that most programs provide a reasonably good healthcare pre-professional major/degree. Beyond that, however, we found that many pharmaceutical sciences degrees fall short in preparing graduates for the demands of working in the pharmaceutical industry or biotechnology related to drug discovery and development. Specifically, coursework in other programs does not address the demands of science and laboratory work in an environment of exacting standards under intensive governmental regulation. We think that our content to address this gap will make UA graduates more attractive to companies who work in this demanding environment. The UA program integrates this content throughout the curriculum, but with a particular focus in three courses, *Drug Approval: The 3 Billion Dollar Bet*, *Biomarkers: Analysis of Drug Effect and Toxicity*, and *Rigor and Reproducibility: Bridging Academia and Pharma*. An additional distinguishing area of content in the UA program is in the growing field of precision therapeutics, sometimes referred to as “...choosing the right drug, for the right person, at the right dose, ahead of time”. One example of this is decoding a person's DNA sequence to identify markers in their blueprint that predict which drugs are likely to fail or to produce a harmful effect. That information can then guide the *a priori* choice of drugs to use and drugs to avoid (in today's current clinical world, often the patient has to experience the harmful effect before the decision to discontinue that drug is made). The UA program covers this rapidly-evolving area in the course, *Pharmacogenomics: Predicting a Patient's Future*.

To summarize the comparison, key foundational concepts are maintained within the three programs, including a foundation in basic sciences, drug design and associated chemistry, pharmacology, and pharmacokinetics (ADME). Distinguishing elements of the UA BSPS program include a contemporary focus on the drug-regulatory environment, and on the rapidly evolving area of precision healthcare.
A. CURRENT COURSES AND EXISTING PROGRAMS -- list current courses and existing university programs which will give strengths to the proposed program. If the courses listed belong to a department that is not a signed party to this implementation request, please obtain the department head’s permission to include the courses in the proposed program and information regarding accessibility to the course(s) for students in the proposed program.

BSPS coursework included above (Section III) takes advantage of complementary UA course offerings in nine departments within five UA colleges. These departments and colleges are presented graphically in Figure 1. In appendix material, we include letters of support from each of the partnering colleges.

B. SPECIAL CONDITIONS FOR ADMISSION TO/DECLARATION OF THIS MAJOR-explain in detail the criteria to join this major, including GPA requirements, completion of courses prior to declaration, application process, interviews, etc. These conditions must be approved by faculty governance to be enforced.

(1) Official transcripts, GPA ≥ 2.0 in program required supporting courses
(2) Application and personal statement explaining how enrollment into the BSPS Program will allow the students to achieve their career goals
C. NEW COURSES NEEDED -- list any new courses which must be added to initiate the program; include a course prefix, number, title, catalog description and number of units for each of these courses.

<table>
<thead>
<tr>
<th>Course Number / Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOL 301 (1 unit) Bioethics in Drug Development and Clinical Trials</td>
<td>This colloquium-styled course will broadly introduce students to the importance of biomedical research in drug approval and in research ethics, with special focus on ethical issues that arise from the use of animals in pharmaceutical research (e.g. animal alternatives, use of primates), and issues that have historically come to light in human drug clinical trials (e.g. physician-pharma relationships, contracted research in economically disadvantaged countries). Faculty from various UA units (Philosophy, Law, Nursing, Medicine, Pharmacy, Office of Research Integrity, Human Subjects Protection Program) will be invited to participate.</td>
</tr>
<tr>
<td>PCOL 305 (3 units) Scientific Writing: Publications to Proposals to Drug Information</td>
<td>In this fully online course students will learn to read and interpret basic and clinical science papers and to write scientific manuscripts and research proposals. Emphasis will be placed on conveying the significance of research, outlining aims, and discussing results for scientific papers and grant proposals. Students will learn the traditional sections of a scientific paper, how methods are used and presented, how results are communicated, and the elements of a good discussion section. Best practices for figures and tables (data presentation) will be described and students will be shown how to craft an abstract from a work of literature. Students will learn what a research proposal contains (modeled on NIH grants) and how one is constructed. Students will also learn about science translation to non-science audiences through studying drug information publications that target a general audience.</td>
</tr>
<tr>
<td>PCOL 310 (2 units) New Drug Approval: The 3 Billion Dollar Bet</td>
<td>This course will provide students a background to the expansive pharmaceutical regulatory process that aims to prevent unsafe and ineffective drugs from entering the marketplace, and to ensure that approved drugs are effective and safe when used in expanded populations of patients.</td>
</tr>
<tr>
<td>PCOL 350 (3 units) ADME: How the Body Changes Drugs</td>
<td>ADME, an acronym for absorption, distribution, metabolism, excretion, is often the determining factor in whether drugs generate the desired effect, or no effect, or a harmful effect. PCOL 350 provides students with a rounded education in the ways that the body changes the chemical form of drugs, as well as the ways that the body directs the movement of drugs over time, from administration through excretion.</td>
</tr>
<tr>
<td>PCOL 360 (5 units) Pharmacology: How Drugs Change the Body</td>
<td>In contrast to ADME, pharmacology is the science of the ways in which drugs interact with their targets in the body to change a particular body function. This course will provide students with comprehensive content in the altered biology and physiology that underlie major human diseases. That content will be tightly linked to the ways that perturbed biology and physiology become the targets of the major classes of drugs that are currently in use or in development.</td>
</tr>
<tr>
<td>PCOL 390 (3 units) Biomarkers: Analysis of Drug Effect and Toxicity</td>
<td>One of the most active areas in drug development research is the discovery of truly sensitive and specific ways to measure, in an animals or humans, how well an experimental drug is exerting its beneficial effect, and how much an experimental drug is exerting a toxic effect. For example, commonly used measurements of</td>
</tr>
</tbody>
</table>
Kidney toxicity may not show any change until over half of kidney function is lost. This course will introduce students to the field of biomarker discovery and measurement, including companion diagnostics. Course topics will complement PCOL 310 by presenting this material in the context of the federal drug regulatory environment, focusing on the development of better biomarkers that can improve the drug approval process.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOL 410 (5 units)</td>
<td>Integrated Medicinal Chemistry and Lab</td>
</tr>
<tr>
<td>PCOL 440 (2 units)</td>
<td>Rigor and Reproducibility: Bridging Academia and Pharma</td>
</tr>
<tr>
<td>PCOL 455 (3 units)</td>
<td>Drug Delivery Systems</td>
</tr>
<tr>
<td>PHCL 460 (3 units)</td>
<td>Designing Drugs: From Chemistry to Cure</td>
</tr>
<tr>
<td>PCOL 470 (4 units)</td>
<td>Pharmacogenomics: Predicting a Patient’s Future</td>
</tr>
</tbody>
</table>

PCOL 410 will be a combined lecture/lab course delivering content in the application of the foundation sciences to drug design. At an appropriate level of content targeting, students will draw on prior math, physics, and chemistry courses in the study of how drugs are conceptualized, designed, and developed. Content will build from basic concepts (structural factors associated with drug activity, drug solubility, pharmacophores) to a consideration of relevant biological drug targets, as well as basic content in structural biology analytical approaches. Lab work will include exposure to computational tools as well as "wet bench" work in screening a set of anti-cancer drugs in human cell lines.

PCOL 440 will introduce students to a timely issue of intense focus, both at the level of funding agencies, as well as at the level of academic-pharma/biotech partnerships in drug commercialization. In both of these environments serious concerns have been raised regarding the level of rigor and reproducibility in academic science. This course will expose students to the spectrum of rigor and reproducibility, and engage students in discussions that aim to link the particular rigor applied to an experiment with the demands that exist for the data; for example, contrasting the demands of a pilot experiment to initially test an idea Vs. the measurement of the response to a new drug that will be used as data to seek investment from a pharmaceutical company. Students will be challenged to develop plans for assays that include clearly described validation schemes.

In this course, undergraduates will learn the basic principles of physical chemistry necessary to understand pharmaceutical dosage forms and their design. We will cover various dosage forms and drug delivery systems, and how medicinal and pharmaceutical substances are incorporated into them. We will also link course content to prior coursework in ADME (PCOL 350), focusing on how drug delivery interacts with biological factors affecting drug bioavailability, time course of drugs and metabolites in the body, and individualizing dosage regimens.

This course, conducted in collaboration with the College of Medicine Department of Pharmacology, will integrate content from the entire curriculum in an advanced course focused on identification of diseases of interest, identification of disease targets, and considerations of the design of drugs targeting these molecules. This will happen at a depth of knowledge greater than that of the prior general drug discovery course (PCOL 410), and will introduce students to computational approaches to designing drug molecules based on a protein target of known 3-dimensional structure using lectures and laboratory exercises.

One of the most exciting areas of the pharmaceutical sciences is "Precision Medicine". Faced with 8-10 different anti-hypertension drugs, intuition and generic recommendations currently guide the choice of which drug to start with. Often this leads to frustrating and dangerous rounds of waiting to see if the drug works safely, and if not, trying the next drug in line. PCOL 470 will introduce the student to the
field of pharmacogenomics, which involves *a priori* measuring the subtle differences in the biological blueprint and its expression in different individuals, and from that drawing conclusions about the likelihood of that individual having a beneficial drug effect, no effect, or a toxic effect. The course will discuss this in the context of new drug development, where avoiding such points of individual response variability may be the most efficient strategy.

<table>
<thead>
<tr>
<th>PCOL 493 (6 units) Internship in Pharmaceutical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>This internship is intended to provide advanced undergraduates in the BSPS program with practical experience in the broad fields applicable to the Pharmaceutical Sciences. Organizations hosting students for this summer experience could include pharmaceutical companies, biotech companies, analytical laboratories, or regulatory organizations such as CPATH here in Tucson.</td>
</tr>
</tbody>
</table>

D. REQUIREMENTS FOR ACCREDITATION -- describe the requirements for accreditation if the program will seek to become accredited. Assess the eligibility of the proposed program for accreditation.

There are no requirements for accreditation of this degree program.

IV. STUDENT LEARNING OUTCOMES AND ASSESSMENT

A. STUDENT OUTCOMES -- describe what students should know, understand, and/or be able to do at the conclusion of this program of study.

Our overarching goals for the BSPS program are to graduate students who will have the ability to:

a) demonstrate an understanding of chemical-biological interactions as related to current drugs and the discovery and development of new drugs;

b) demonstrate an understanding of the governmental regulation of the drug development process, including the demanding requirement for stringently controlled research;

c) apply the scientific method to address gaps in knowledge, through hypothesis formulation, data collection/analysis, and rational interpretation;

d) understand the techniques, skills, and modern tools in use by pharmaceutical science industry;

e) communicate effectively in written and oral presentation.
B. STUDENT ASSESSMENT — provide a plan for assessing intended student outcomes while the students are in the program and after they have completed the degree.

The framework for assessment of these outcomes in the UA BSPS program is outlined in the table below. The plan involves the use of both direct and indirect outcome measures that sample students and employers using surveys, embedded components of program coursework, and rubric-guided evaluation of student presentations and composition. The entire assessment scheme will be measured in a 3-year cycle. We will periodically review this assessment scheme with UA-OIA for critical input/improvement.

![UA BSPS Assessment Scheme](image)

UA BSPS Assessment Scheme

<table>
<thead>
<tr>
<th>MAJOR OUTCOMES</th>
<th>METHOD FOR ASSESSING LEARNING</th>
<th>TIMELINE: Aim is to review all five outcomes within a 3 year cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome 1: understand chemical-biological interactions as related to current drugs and the discovery and development of new drugs.</td>
<td>Surveys focused on students’ knowledge and preparedness, administered to research mentors, internship supervisors, employers. Will begin in Year 2 and be conducted annually (indirect measure)</td>
<td>Year 1</td>
</tr>
<tr>
<td>Outcome 2: understand the governmental regulation of the drug development process, including the demanding requirement for stringently controlled research</td>
<td>Graduating seniors and alumni will be surveyed using prompts related to the students’ level of comfort in understanding scientific content in these areas, in designing a strategy to scientifically address questions in these areas, and in the use of contemporary tools and techniques to conduct research in these areas. Will begin in Year 2 and be conducted annually (indirect measure)</td>
<td>Year 1</td>
</tr>
<tr>
<td>Outcome 3: apply the scientific method to address gaps in knowledge, through hypothesis formulation, data collection/analysis, and rational interpretation</td>
<td>Response to selected questions embedded in exams/assignments in PCOL 310, PCOL 390, PCOL 360, PCOL 410 will be analyzed. (direct measure)</td>
<td>Year 2</td>
</tr>
<tr>
<td>Outcome 4: understand the techniques, skills, and modern tools in use by pharmaceutical science industry</td>
<td>Term paper (PCOL 460) scoring rubric includes rational use of scientific method (direct measure)</td>
<td>Year 2</td>
</tr>
<tr>
<td>Outcome 5: communicate effectively in written and oral presentation</td>
<td>Response to selected questions embedded in PCOL 310, PCOL 390, PCOL 360, PCOL 410 will be analyzed. (direct measure)</td>
<td>Year 3</td>
</tr>
<tr>
<td></td>
<td>Senior semester oral presentation (PCOL 460) and Term Paper (PCOL 470) scored using standardized rubric (direct measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral presentations describing internships scored using standardized rubric (direct measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students will be encouraged to participate in scientific conferences locally and beyond. Posters will be scored by a faculty member using a standardized rubric (direct measure)</td>
<td></td>
</tr>
</tbody>
</table>
Mapping of required major coursework to student outcomes is represented in the table below (green shading indicates course contributes to outcome).

```
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
<th>Outcome 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHCL 460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOL 470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

V. STATE’S NEED FOR THE PROGRAM

A. HOW DOES THIS PROGRAM FULFILL THE NEEDS OF THE STATE OF ARIZONA AND THE REGION? -- INCLUDE AN EXPLANATION OF THE PROCESS OR SOURCE FOR ARRIVING AT ALL NUMBERS USED IN THIS SECTION

1. IS THERE SUFFICIENT STUDENT DEMAND FOR THE PROGRAM?

Demand within current UA students: We are confident that there is sufficient student demand to support the projected program enrollment. One indicator of this is the membership of the pre-pharmacy club, which is generally around 150 students per year. These students have a self-evident interest in the pharmaceutical sciences, with a particular focus on the pharmacy professional track, one of the career paths that we envision for the BSPS program. Together with students interested in this major as a path to pharmaceutical/biotech careers we think that student interest will support our projected enrollment numbers. We are currently conducting a survey of student interest in this major within the pre-pharmacy club and will submit those data as a separate document.
Plan to market program to prospective UA undergraduate students:

In conjunction with UA Admissions, the COP Communications Director is in the process of developing a marketing plan for the BSPS program that is focused on the enrollment of qualified students from outside UA. In this marketing effort:

Students will be recruited primarily from the Southwest, focusing on attracting exceptional college freshman and sophomores from community colleges, public and private higher education institutes in Arizona, New Mexico, Nevada, Colorado, Utah, and California. Recruitment in the southwest will also target high-school students and parents.

Marketing Outreach
We anticipate using a mix of marketing outreach activities to engage prospective students, as well as the individuals who may guide them as they explore options in higher education (their parents, academic advisors, and STEM educators).

- Tap into UA Admissions. UA Admissions is the University’s gateway to entering an undergraduate program here. Working with their team, educate recruiters about the degree and provide materials/giveaways to empower them to promote the degree while 'on the road' marketing UA.

 Once approved as a degree, the Assistant Vice President for Enrollment Planning and Recruitment, along with our Senior Director for Undergraduate Recruitment, will work with us to further refine our marketing plan.

- Ensure the program is advertised as part of UA’s marketing and website. The university has many (free) places where prospective students can explore degree options both online and in print. Make sure our program is included and provide compelling information about the degree.

- Build the program presence online, and do it well. Create new content and place quality images that effectively market the program on the college’s website. Optimize pages for mobile and search so our program information can be found, ranked and displayed in search engines. This content, along with the program brochure, will be the foundational talking points for the program. A well-built website will help us attract prospective students with similar interests.

- Google advertising. Key word search is an excellent way to target prospective students based on their searches. Paid advertisements via Google display ads and Google search ads (appearing in text searches) could be placed to increase awareness among target audiences.
- Paid print advertising. Place paid advertisements in the Arizona alumni magazine, and explore options for a media campaign in targeted areas. This could include print or radio ads.

- Media relations. Generate excitement around the launch of the new degree program by generating a press release and pitching Arizona media about it. Address how the degree will benefit students, what type of professional it will prepare and how this degree program will benefit the state.

- College recruitment fairs. Many associations host recruitment fairs which allow colleges and units to promote their programs and degrees. Evaluate and explore these groups to tap into their events hosted year-round:
 - Each fall and spring the National Association for College Admission Counseling (NACAC) holds free college fairs in cities across the country.
 - Arizona School Counselors Association College Fairs
 - Rocky Mountain Association for College Admission Counseling hosts fairs in Utah, Arizona, Colorado and New Mexico
 - The UA also hosts multiple fairs for its students to help expose them to different careers and majors:
 - Meet your Major
 - Arizona Insider (for high school seniors)
 - Arizona Experience (for prospective students)
 - College Knowledge for Middle-School Parents

- High School presentations. The College of Pharmacy has built a substantial network of outreach to local high-schools (One Example: COP developed the highly-successful KEYS summer internship program. https://www.keys.pharmacy.arizona.edu/content/about-keys) Plan a circuit and visit high schools in Arizona to speak about this program and other career options in pharmacy to junior and senior students.

- Coordinate a direct mail campaign targeting high school counselors, college admissions counselors and STEM faculty leadership in post-secondary institutes in Arizona, Utah, Colorado, Nevada and California. Purchase mailing lists for the purpose of introducing the degree program to them and send tailored information about the program.

- Host informational sessions for interested students and their parents. Prospective students may have many questions about why they should select this degree over other science-based bachelor's degree programs. Hosting an information session allows students to gather, ask questions, and meet the student services team. Sessions would be targeted at freshman and sophomores in college and can be promoted at community colleges and schools that may have students interested in transferring to the UA.
2. What is the anticipated student enrollment for this program? (Please utilize the following tabular format).

<table>
<thead>
<tr>
<th>Number of Majors</th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>5th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>85</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
</tbody>
</table>

3. What is the local, regional and national need for this program? Provide market analysis data or other tangible evidence of the need for and interest in this program. This might include results from surveys of current students, alumni, and/or employers or reference to student enrollments in similar programs in the state or region. Include an assessment of the employment opportunities for graduates of the program during the next three years.

We see two broad paths for UA BSPS graduates: post-baccalaureate education to pursue professional healthcare degrees (Medicine, Pharmacy, Nursing, Dentistry, Veterinary, etc.) and pursuit of technical/scientific employment in the biosciences (Academia, Pharmaceutical, Testing, Biotech, Medical Devices, Regulatory, etc.), either with a Bachelor's degree or with a subsequent graduate degree.

The Flinn Foundation and the Batelle Institute have developed and shepherded the Arizona Biosciences Roadmap. In the most recent large-scale analysis of business climate in the biosciences, data from 2002 - 2014 was analyzed. During that period, which included a major economic recession, growth in Arizona employment within the sector defined as "Bioscience" by the U.S. Bureau of Labor Statistics substantially outstripped the national average (figure above). The Bioscience sector is a useful indicator of potential employment for BSPS graduates because it includes both healthcare as well as the
pharma/biotechnology sector. Hospitals are the dominant employers in the Bioscience sector, with 78% of the positions. Dividing the 2002-2014 period into pre-recession (2002-2007), recession (2007-2009), and recovery (2009-2014), employment in Arizona hospitals grew by 23%, 7%, and 14% respectively while U.S. hospital employment grew by 9%, 4% and 3%, respectively.

Non-hospital biosciences (includes agricultural feedstock/chemicals, bioscience-related distribution, drugs and pharmaceuticals, medical devices and equipment, and research/testing/medical Laboratories) is an employment category useful in defining the non-healthcare path that we envision for BSPS graduates. In Arizona, non-hospital biosciences employ over 24,000 people, and during those three periods of time between 2002-2014 that sector grew by 19%, 6%, and 17%. In comparison, the U.S employment change for those periods was 6%, -1%, and 3%. By 2014 U.S. employment in non-hospital biosciences was 1.66 million.

The most recent 2014-2025 Biosciences Roadmap highlighted the continued strength of the biosciences in Arizona, and highlighted four goals that are needed to sustain the growth of Arizona biosciences. Noteworthy to our proposed program was this goal:

Build "trees of talent" by encouraging scientific, technical, and managerial talent to be developed and retained in the state.

We believe that innovative university programs that graduate highly qualified individuals with unique bioscience skills directly address a statewide need, as well as a need to fuel the biosciences wherever they are flourishing. To that end, we have included letters of support from two individuals whose careers intersect a diverse array of companies in the biosciences sector. Dr. Martha Brumfield is President and CEO of Critical Path Institute, a nonprofit public-private partnership with the Food and Drug Administration (FDA) created under the auspices of the FDA’s Critical Path Initiative program in 2005. This unique organization has carved out a role as an "honest broker" in creating an environment in which ordinarily exclusively competitive pharmaceutical companies can share some data with their competitors that will be mutually beneficial in accelerating the approval of safe, effective drugs. Dr. David Allen is the Vice President of Tech-Launch Arizona, the UA unit responsible for commercialization of UA research. Both of these individuals have a keen sense of the workforce needs in the biosciences sector that UA BSPS graduates can satisfy.
4. Beginning with the first year in which degrees will be awarded, what is the anticipated number of degrees that will be awarded each year for the first five years? (Please utilize the following tabular format).

<table>
<thead>
<tr>
<th>PROJECTED DEGREES AWARDED ANNUALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1st Year</td>
</tr>
<tr>
<td>Number of Degrees</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>55</td>
</tr>
</tbody>
</table>

IV. APPROPRIATENESS FOR THE UNIVERSITY -- Explain how the proposed program is consistent with the University mission and strategic direction statements of the university and why the university is the most appropriate location within the Arizona University System for the program. Please explain how this proposed program is consistent with the College strategic plan.

The UA BSPS program fits squarely into the mission and strategic planning for UA and for the College of Pharmacy. The UA mission is: To improve the prospects and enrich the lives of the people of Arizona and the world through education, research, creative expression, and community and business partnerships. This is accomplished through the strategic pillars of engaging, innovating, partnering, and synergy. The BSPS program is designed to provide a cutting-edge curriculum in which active learning is emphasized, and real world experience permeates the student experience through faculty who work or have worked in the commercial sector, and through internship experiences in the commercial world. The BSPS program draws from 5 colleges and from experts in the commercialization of innovative ideas and the route to navigating complex government regulation of that commercialization. The very nature of the program speaks to the pillars of partnering and synergy.

A complementary set of goals exist within the College of Pharmacy Strategic Plan that are designed to operationalize the university strategic plan. These include the pursuit of educational excellence, and the advancement of community engagement and workforce development. The BSPS program directly addresses these goals. We believe that the program is an excellent plan for undergraduate education that will have a positive impact on Arizona workforce development in the biosciences.

UA-Tucson is the ideal place to initiate this program because it takes advantage of the active research environment surrounding drug discovery and development. Locating the program in Tucson also leverages the local pool of commercial entities “spun off” of the UA, as well as the unique organizations like CPATH that simply cannot be found anywhere else.

V. EXISTING PROGRAMS WITHIN THE ARIZONA UNIVERSITY SYSTEM
A. Arizona University System -- List all similar programs at the same academic level (Bachelor's, Master's, Doctoral) currently offered in the Arizona University System. (Please utilize the following tabular format).

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Degree Type</th>
<th>Number of Students Enrolled</th>
<th>LOCATION University & Site</th>
<th>PROGRAM ACCREDITATION? YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curricular Affairs (and the Graduate College for graduate programs) will determine if you are required to complete a comparison chart to discuss the ways in which the proposed program differs from University of Arizona programs.

No Existing Similar Bachelor's Programs at UA

VI. EXPECTED FACULTY AND RESOURCE REQUIREMENTS

A. FACULTY

1. Current Faculty -- List the name, rank, highest degree, primary department and estimate of the level of involvement of all current faculty members who will participate in the program. If proposed program is at the graduate level, also list the number of master's theses and doctoral dissertations each of these faculty members have directed to completion. Attach a brief vita for each faculty member listed.

<table>
<thead>
<tr>
<th>NAME</th>
<th>DEPARTMENT</th>
<th>INVOLVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walt Klimecki, DVM, Ph.D.</td>
<td>Pharmacology and Toxicology</td>
<td>Program Director, Coordinating/Teaching 1 course (1 unit, 3 units)</td>
</tr>
<tr>
<td>Nathan Cherrington, Ph.D.</td>
<td>Pharmacology and Toxicology</td>
<td>Coordinating/Teaching 1 courses (3 units)</td>
</tr>
<tr>
<td>John Regan, Ph.D.</td>
<td>Pharmacology and Toxicology</td>
<td>Coordinating/Teaching 1 courses (5 units)</td>
</tr>
<tr>
<td>Chris Hulme, Ph.D.</td>
<td>Pharmacology and Toxicology</td>
<td>Coordinating/Teaching 1 courses (5 units)</td>
</tr>
<tr>
<td>Elizabeth Hall-Lipsy, J.D., M.P.H.</td>
<td>Pharmacy Practice and Science</td>
<td>Coordinating/Teaching 1 course (3 units)</td>
</tr>
</tbody>
</table>
Amanda Baker, Pharm.D., Ph.D. Pharmacy Practice and Science Coordinating/Teaching 2 courses (3 units, 2 units)

Paul Myrdal, Ph.D. Pharmacy Practice and Science Coordinating/Teaching 1 course (3 units)

Jennifer Schnellmann, Ph.D. Pharmacology Coordinating/Teaching 1 course (3 units)

May Khanna, Ph.D. Pharmacology Coordinating/Teaching 1 course (3 units)

Roger Miesfeld Chemistry/Biochemistry Coordinating/Teaching 1 course (3 units)

2. **Additional Faculty** -- Describe the additional faculty needed during the next three years for the initiation of the program and list the anticipated schedule for addition of these faculty members. We do not anticipate the need to hire additional faculty for the near-term.

3. **Current Student and Faculty FTEs** -- Give the present numbers of Student FTE (identify number by graduate and undergraduate students) and Faculty FTE in the department or unit in which the program will be offered.

The Pharmacology and Toxicology department currently has no undergraduate students (the BSPS will be the first undergraduate major/degree offered in our college)

There are 21 graduate students in the Pharmacology and Toxicology department. There are 16 faculty FTE in the Pharmacology and Toxicology department.

4. **Projected Student and Faculty FTEs** -- Give the proposed numbers of Student FTE and Faculty FTE for the next three years in the department or unit in which the program will be offered.

<table>
<thead>
<tr>
<th></th>
<th>AY 17/18</th>
<th>AY 18/19</th>
<th>AY 19/20</th>
<th>AY 20/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate*</td>
<td>0</td>
<td>30</td>
<td>85</td>
<td>110</td>
</tr>
<tr>
<td>Graduate**</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>Faculty**</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

*Increase based on anticipated expansion of enrollment
** Increase based on current and planned faculty recruitment

B. **LIBRARY**

1. **Acquisitions Needed** -- Describe additional library acquisitions needed during the next three years for the successful initiation of the program.

No library acquisitions needed

C. **PHYSICAL FACILITIES AND EQUIPMENT**
1. **Existing Physical Facilities** -- Assess the adequacy of the existing physical facilities and equipment available to the proposed program. Include special classrooms, laboratories, physical equipment, computer facilities, etc. Special classrooms will not be required. Medicinal chemistry laboratory components will be held in existing laboratory space in the Skaggs Pharmaceutical Sciences building and in Drachman Hall A. Computational components of medicinal chemistry laboratories can be accomplished on students' laptop computers.

2. **Additional Facilities Required or Anticipated** -- Describe physical facilities and equipment that will be required or are anticipated during the next three years for the proposed program.
We do not anticipate that any additional facilities or equipment will be required for the near-term.

D. OTHER SUPPORT

1. Other Support Currently Available -- Include support staff, university and non-university assistance.
 As we have highlighted earlier in this proposal, college marketing/communications support is available to publicize the program in student recruitment efforts.

2. Other Support Needed, Next Three Years -- List additional staff needed and other assistance needed for the next three years.
 We are not initially planning to employ graduate assistants in this program. Within our enrollment projections the assigned faculty can manage the coursework. Our current departmental graduate programs are typical of many biomedical doctoral programs in offering graduate research assistantships, but not graduate teaching assistantships. Even if we decide to move to employing graduate students as TAs we would first get the program up and running smoothly without that feature, and then carefully plan how we would implement the addition of the graduate student employment option as TAs.

 We will hire a program coordinator and an academic advisor dedicated to the BSPS program prior to the launch of the program.

VII. FINANCING

A. SUPPORTING FUNDS FROM OUTSIDE SOURCES -- List.

B. BUDGET PROJECTIONS FORM -- Complete the budget projections form describing the current departmental budget and estimating additional costs for the first three years of operation for the proposed program. Please note that these costs for each year are incremental costs, not cumulative costs. Include in this budget the anticipated costs for support for instruction, administration of the program, graduate students, marketing, the support discussed in Section VI-D.2, and any other costs that will be needed.

VIII. OTHER RELEVANT INFORMATION

IX. REQUIRED SIGNATURES:

Managing Unit Administrator: Stacy Lauver, Assistant Dean for Finance and Administration

Managing Administrator's Signature: Stacy D. Lauver Date: 10/12/17
All programs that will be offered through distance learning must include the following signature. The signature of approval does not indicate a commitment to invest in this program. Any potential investment agreement is a separate process.

Joel Hauff, Associate Vice President of Student Affairs & Enrollment Management/Academic Initiatives and Student Success

Signature: ___________________________ Date: ________________

All programs that will be offered fully online must include the following signature: The signature of approval does not indicate a commitment to invest in this program. Any potential investment agreement is a separate process.

Vincent Del Casino Jr., Vice Provost for Digital Learning and Associate Vice President of Student Affairs & Enrollment Management

Signature: ___________________________ Date: ________________

Note: In some situations signatures of more than one unit head and/or college dean may be required.
BRIEF FACULTY CVs
CURRICULUM VITAE: Amanda Baker, Pharm.D., Ph.D.
Assistant Professor of Medicine
College of Medicine, University of Arizona
ABaker@uacc.arizona.edu

EDUCATION

August 1997 Ph.D. Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona
Mentor: Garth Powis, D. Phil.

May 2000 Pharmacy Doctorate, University of Arizona College of Pharmacy

EMPLOYMENT

Dec 2009-Present Research Scientist, Critical Path Institute, Tucson, AZ

July 2008-Present Associate Professor of Medicine, Research Scholar Track, Section of Hematology/Oncology, Arizona Cancer Center, University of Arizona, Tucson, AZ

Jan. 2002-June 2008 Research Assistant Professor, College of Medicine, Section of Hematology/Oncology, Arizona Cancer Center, University of Arizona, Tucson, AZ

Arizona Cancer Center, University of Arizona, Tucson, AZ

Arizona Cancer Center, University of Arizona, Tucson, AZ

Dependable Staffing, Phoenix, AZ

1992-1997 Graduate Student/Research Assistant
Department of Pharmacology/Toxicology, University of Arizona, Tucson, AZ

TEACHING

CBIO 553: Advanced Topics in Cancer Biology
Guest Lecturer

UA Fellows Bootcamp
Guest Lecturer

PHSC 610 Solids, Nanotech, Engineering Design Drug Delivery
Guest Lecturer

SELECTED PEER-REVIEWED PUBLICATIONS

Akhenblit PJ, Hanke NT, Gill A, Persky DO, Howison CM, Pagel MD, **Baker AF**. Assessing Metabolic Changes in Response to mTOR Inhibition in a Mantle Cell Lymphoma Xenograft Model Using AcidoCEST MRI. Mol Imaging. 2016 May 2;15. PMID: 27140422.

Regulatory Briefing Documents
CURRICULUM VITAE: Nathan Cherrington, Ph.D.
Professor of Pharmacology and Toxicology
College of Pharmacy, University of Arizona
cherring@pharmacy.arizona.edu

EDUCATION
1997 Ph.D., Toxicology Department, North Carolina State University, Raleigh, North Carolina, Mentor: Ernst Hodgson
2002 Post-doctoral fellow, Toxicology Department, University of Kansas Medical Center, Kansas City, KS
 Advisor, Curtis D. Klaassen

EMPLOYMENT
2015-Present Interim Director, Arizona Board of Regents Center for Toxicology
2015-Present Director, NIEHS P30 Southwest Environmental Health Sciences Center, University of Arizona, Tucson, AZ.
2015-Present Director, NIEHS T32 Training in Environmental Toxicology of Human Disease, University of Arizona, Tucson, AZ.
2012-Present Professor and 1885 Society Distinguished Scholar, Dept. of Pharmacology and Toxicology, University of Arizona, Tucson, AZ.
2011-Present Director of Graduate Studies, College of Pharmacy, and Head, Dept. of Pharmaceutical Sciences, University of Arizona, Tucson, AZ.
2008-2012 Associate Professor, Dept. of Pharmacology and Toxicology, University of Arizona, Tucson, AZ.
2010-Present Associate Professor, Community, Environment and Policy Division, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ.
2002-2008 Assistant Professor, Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ. Member, Southwest Environmental Health Sciences Center

TEACHING
General and Systems Toxicology* (PCOL 602A) 2003-Present
 Required course for Ph.D. and M.S. degrees in Pharmacology and Toxicology
 6 lectures each fall semester
 * Course Coordinator 2007-Present

Drug Metabolism and Disposition* (PCOL 550) 2003-Present
 Required course for Ph.D. and M.S. degrees in Pharmacology and Toxicology
 9 lectures each spring semester
 * Course Coordinator 2013-Present

Environmental Toxicology* (PCOL 573)
 Required course for Training Grant predocs and postdocs
* Course Coordinator 2016-present

Science of Pharmacology (PCOL 871A) 2003-Present
- Required course for Pharm.D., Ph.D. and M.S. degrees
- 6 lectures each fall semester

Cellular Communications and Signal Transduction (PCOL 630B) 2005-Present
- Required course for Ph.D. and M.S. degrees in Pharmacology and Toxicology
- 3-4 lectures each fall semester

Case Studies in Biochemical Pharmacology (PCOL 870/871) 2003-Present
- Required course for Pharm.D. students
- 3 case studies each fall and spring semesters
- Authored “Marilyn Daines” Acetaminophen Toxicity case

Individualized Medicine: Applied Pharmacogenetics (PHPR 887) 2010-2013
- Required course for Pharm.D. students
- 2 lectures each spring semester

Advanced Toxicology* (PCOL 596C) 2004-2010
- Required course for Ph.D. and M.S. degrees in Pharmacology and Toxicology
- 6-7 lectures each fall semester
- * Course Coordinator 2004-2010

Intro to Pharmacology/Toxicology Research (PCOL586B) 2003-Present
- Required course for Ph.D. and M.S. degrees
- Laboratory introduction fall and spring semester

SELECTED PEER-REVIEWED PUBLICATIONS

Clarke JD, **Cherrington NJ.** Nonalcoholic steatohepatitis in precision medicine: Unraveling the factors that contribute to individual variability. *Pharmacol Ther.* 2015 Jul;151:99-106.

EDUCATION
2005 J.D., University of Arizona College of Law
2002 M.P.H., University of Arizona College of Public Health

Professional Licensures & Certifications
Licensed to practice law in state courts of Arizona, Arizona Bar Association 2005 (Inactive status)
Licensed to practice law, federal courts of District of Arizona, United States District Court, Arizona 2005 (Inactive status)

EMPLOYMENT
2011-Present Assistant Professor of Pharmacy Practice and Science, University of Arizona, Tucson, AZ
2008-Present Coordinator of Rural Health Professions Program, College of Pharmacy, University of Arizona, Tucson, AZ
2008-2011 University of Arizona College of Pharmacy: Program Manager for Health Disparities Initiatives and Community Outreach; Tucson, Arizona

TEACHING
PHPR 843: Pharmacy Laws
 Coordinator, Lecturer

PHPR 814: Preventative Care
 Lecturer

PHPR 828: Pharmacy Health Disparities in U.S.
 Lecturer

PHPR 861c: Drug Literature Evaluation and Application
 Guest Lecturer

SELECTED PEER-REVIEWED PUBLICATIONS

EDUCATION
1989 M.Sc., Department of Chemistry, Hertford College, Oxford University, Oxford, England
1992 Ph.D, Hertford College, Oxford University, Oxford, England
Advisor, J.E. Baldwin
1994 Post-Doc, University of Texas, Austin, Texas
Advisor, P. D. Magnus

EMPLOYMENT
2011-Present Professor of Pharmacology and Toxicology, University of Arizona, Tucson, AZ
2007-2011 Associate Professor of Pharmacology and Toxicology, University of Arizona, Tucson, AZ
2004-2007 Group Leader of the High Throughput Medicinal Chemistry Group and Platform Library Sciences, Eli Lilly Pharmaceuticals, Indianapolis, Indiana
1999-2004 Head of Medicinal Chemistry Technologies, Amgen, Thousand Oaks, California
1994-1999 Research Scientist, Senior Research Scientist, Research Fellow, Rhone Poulenc Rorer Pharmaceuticals, Collegeville, Pennsylvania

TEACHING
PCOL 873a: Medicinal Chemistry I
Coordinator, Multiple Lectures
PCOL 873b: Medicinal Chemistry II
Coordinator, Multiple Lectures
PCOL 670: Principles of Drug Discovery and Development
Lecturer
PCOL 195a Pharmaceutical Science: From Bench to Bedside
Guest Lecturer

SELECTED PEER-REVIEWED PUBLICATIONS

CURRICULUM VITAE: MAY KHANNA, Ph.D.
Assistant Professor of Pharmacology
College of Medicine, University of Arizona
maykhanna@email.arizona.edu

EDUCATION
1995-2001 Doctor of Philosophy, Department of Chemistry, Wayne State University, Detroit, Michigan
Mentor: Dr. Christine Chow

2001-2004 Postdoctoral Fellow, Department of Chemistry and Biochemistry, University of California, Los Angeles, California
Mentor: Dr. Juli Feigon

2004-2008 Postdoctoral Fellow, Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
Mentor: Dr. Benjamin Blencowe

EMPLOYMENT
2009-2013 Visiting Research Assistant Professor, Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
Mentors: Dr. Samy O. Meroueh and Dr. Thomas D. Hurley

July 2014-present Assistant Professor, Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona

TEACHING
G749/G807 Structural and Chemical Biology Course
2 lectures: "Principle of Nuclear Magnetic Resonance (NMR)" and “Principles of NMR in Biomolecular Structure Determination"

PCOL530
2 Lectures in Drug Discovery “Disrupting Protein-Protein Interaction using small molecules”

PHCL 596C
Medical Pharmacology Student Seminar Course Director

CRC Clinical Reasoning Facilitator for Medical Students

SELECTED PEER-REVIEWED PUBLICATIONS

CURRICULUM VITAE: Walt Klimecki, DVM, Ph.D.
Associate Professor
Department Head (Interim), Pharmacology and Toxicology
College of Pharmacy, University of Arizona
klimecki@pharmacy.arizona.edu

EDUCATION

1998 Post-doc, Cancer Biology, Arizona Cancer Center, Tucson, Arizona, Mentor: G. Tim Bowden
1994 Ph.D., Pharmacology and Toxicology, College of Pharmacy University of Arizona, Tucson, Arizona
1984 Doctor of Veterinary Medicine, The Ohio State University, Columbus, Ohio

EMPLOYMENT

2015-Present Department Head (Interim)
Department of Pharmacology and Toxicology
College of Pharmacy, University of Arizona

2013-2015 Associate Department Head
Department of Pharmacology and Toxicology
College of Pharmacy, University of Arizona

2012-Present Associate Professor of Pharmacology and Toxicology
Department of Pharmacology and Toxicology
College of Pharmacy, University of Arizona

2006 - Present Assistant Professor of Pharmacology and Toxicology
Department of Pharmacology and Toxicology
College of Pharmacy, University of Arizona

2016 - Present Joint Appointment: Associate Professor
College of Nursing

2009 - Present Joint Appointment: Associate Professor
Division of Community, Environment and Policy
Mel and Enid Zuckerman College of Public Health
University of Arizona

2004 - Present Research Assistant Professor
Department of Medicine
College of Medicine
University of Arizona
TEACHING

<table>
<thead>
<tr>
<th>Course/Title</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 472a/572a Pharmacology for Nursing</td>
<td>Required course for Nursing Students</td>
</tr>
<tr>
<td>Coordinator and Sole Lecturer: 2016-Current</td>
<td></td>
</tr>
<tr>
<td>PCOL 887 Individualized Medicine</td>
<td>Required course for 1st year Pharm. D. professional</td>
</tr>
<tr>
<td>Involvement: 2012-2014: Coordinator, completely</td>
<td></td>
</tr>
<tr>
<td>revised course and structured it as “flipped</td>
<td></td>
</tr>
<tr>
<td>classroom” in 2013, and as a fully online course</td>
<td></td>
</tr>
<tr>
<td>in 2014. 2017: Guest Lecturer</td>
<td></td>
</tr>
<tr>
<td>PCOL 835A Immunology and Hematology</td>
<td>Required course for 1st year Pharm. D. professional</td>
</tr>
<tr>
<td>Involvement: 2006 (6 lecture hours), 2007, 2008,</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>PCOL 601 Genomics and Proteomics</td>
<td>Required course for graduate students in Pharm/Tox,</td>
</tr>
<tr>
<td>PCOL 631/831 Pharmacogenetics and Pharmacogenomics</td>
<td>Elective course for graduate students and for Pharm. D.</td>
</tr>
<tr>
<td>PCOL 820/821 Case Studies in Pharmacy</td>
<td>Required course for 1st year Pharm. D. students</td>
</tr>
<tr>
<td>Involvement: Every semester, 2006-Present, 2015-2016</td>
<td></td>
</tr>
<tr>
<td>PCOL 596c Advanced Toxicology</td>
<td>Required course for 1st year Pharm/Tox graduate students, a weekly journal club</td>
</tr>
<tr>
<td>Involvement: 2007-2012</td>
<td></td>
</tr>
<tr>
<td>PCOL 550 Drug Disposition and Metabolism</td>
<td>Required course for first year Pharm/Tox grad students.</td>
</tr>
<tr>
<td>Involvement: 2008-Present</td>
<td></td>
</tr>
<tr>
<td>PCOL 573 Environmental Toxicology</td>
<td>Required colloquium for students on the Toxicogenomics training grant</td>
</tr>
<tr>
<td>Involvement: 2008 - Present</td>
<td></td>
</tr>
<tr>
<td>PCOL 602a General and Systems Toxicology</td>
<td>Required course for 2nd year Pharm/Tox grad students.</td>
</tr>
<tr>
<td>Involvement: 2007 - Present</td>
<td></td>
</tr>
<tr>
<td>CBA 595h Problems in the Biology of Complex</td>
<td>A colloquium course offered through the ABCD Complex</td>
</tr>
<tr>
<td>Diseases</td>
<td>Diseases Initiative, Sponsored by Arizona Research Labs</td>
</tr>
<tr>
<td>Involvement: (Human genetics and disease) 2008-2016</td>
<td>and BIO5.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>BME 524</td>
<td>Contrast Agents, Molecular Imaging, and Kinetics</td>
</tr>
<tr>
<td>EPI 573c</td>
<td>Advanced Epidemiology</td>
</tr>
<tr>
<td>EPI 677</td>
<td>Genetic Association Studies</td>
</tr>
<tr>
<td>PCOL 395</td>
<td>The Chemical Environment, Environmental Exposures, and Human Disease</td>
</tr>
</tbody>
</table>

SELECTED PEER-REVIEWED PUBLICATIONS

CURRICULUM VITAE: ROGER MIESFELD, Ph.D.
Professor and Head, Dept. of Chemistry & Biochemistry
College of Science, University of Arizona
rlm@email.arizona.edu

EDUCATION
1983 Doctor of Philosophy, Department of Biochemistry, Stony Brook University (SUNY), Stony Brook, New York
Mentor: Dr. Norman Arnheim
1983-1987 Postdoctoral Fellow, Department of Biochemistry and Biophysics, University of California, San Francisco, California
Mentor: Dr. Keith Yamamoto

EMPLOYMENT
1987-1983 Assistant Professor, Depts. of Biochemistry and Molecular & Cellular Biology, University of Arizona
1993-1998 Associate Professor, Depts. of Biochemistry and Molecular & Cellular Biology, University of Arizona
1998-Present Professor, Depts. of Chemistry and Biochemistry and Molecular & Cellular Biology, University of Arizona

TEACHING
Medical School Biochemistry (BIOC 801)
Medical School Molecular and Cellular Biology (MCB 801)
Biochemistry Graduate Core Course (BIOC 572)
Biochemistry Graduate Core Course (BIOC 572)
Molecular Biology (MCB 511)
 Spring 1992 - Graduate student discussion sessions (8 hours)
 Spring 1993 - Graduate student discussion sessions (8 hours)
 Spring 1994 - Graduate student discussion sessions (8 hours)
Applied Molecular Genetics (Bioc 471/571)
 Fall 1999 - Upper division discussion course (30 lecture hours)
 Fall 2000 - Upper division discussion course (30 lecture hours)
 Fall 2001 - Upper division discussion course (30 lecture hours)
Opportunities in Biochemistry (Bioc 195G)
 Fall 2007 - Colloquium to introduced students to biochemistry (2 sections)
 Fall 2008 - Colloquium to introduced students to biochemistry (2 sections)
Undergraduate Majors Biochemistry (Bioc 462)
 Spring 1995 - Discussion sections and Honors section (60 hours)
 Spring 1996 - Discussion sections and Honors section (60 hours)
 Spring 1997 - Discussion sections and 16 lecture hours (62 hours)
 Spring 1998 - Discussion sections and 16 lecture hours (62 hours)
 Fall 2002 - Discussion sections
 Spring 2006 - Discussion section and 14 lecture hours (62 hours)
Undergraduate Non-Majors Biochemistry (Bioc 460)
Spring 1999 - Protein and Metabolic Biochemistry (25 lecture hours)
Spring 2000 - Protein and Metabolic Biochemistry (25 lecture hours)
Spring 2001 - Protein and Metabolic Biochemistry (25 lecture hours)
Spring 2002 - Protein and Metabolic Biochemistry (25 lecture hours)
Spring 2004 - Protein and Metabolic Biochemistry (22 lecture hours)
Spring 2005 - Protein and Metabolic Biochemistry (22 lecture hours)
Summer 2006 - Protein and Metabolic Biochemistry (20 lecture hours)
Spring 2008 - Protein and Metabolic Biochemistry (20 lecture hours)
Fall 2008 - Protein and Metabolic Biochemistry (20 lecture hours, two sections)
Fall 2009 - Protein and Metabolic Biochemistry (20 lecture hours, two sections)
Fall 2010 - Protein and Metabolic Biochemistry (20 lecture hours, two sections)
Spring 2011 - Protein and Metabolic Biochemistry (20 lecture hours, two sections)

Introduction to Biochemical Research (Bioc 296B)
Spring 2009 – Seminar course and small group discussions (15 hours)
Spring 2010 – Seminar course and small group discussions (15 hours)
Fall 2010 – Seminar course and small group discussions (15 hours)
Spring 2012 – Seminar course and small group discussions (15 hours)
Fall 2012 – Seminar course and small group discussions (15 hours)
Spring 2013 – Seminar course and small group discussions (15 hours)

Undergraduate Non-Majors Biochemistry (Bioc 385)
Fall 2011 – Metabolic Biochemistry (42 lecture hours)
Spring 2012 – Metabolic Biochemistry (42 lecture hours)
Spring 2013 – Metabolic Biochemistry (42 lecture hours)
Spring 2014 – Metabolic Biochemistry (42 lecture hours)
Spring 2015 – Metabolic Biochemistry (42 lecture hours)
Spring 2016 – Metabolic Biochemistry (42 lecture hours)
Spring 2017 – Metabolic Biochemistry (42 lecture hours)
Summer 2017 – Metabolic Biochemistry (online)

Undergraduate Non-Majors Biochemistry (Bioc 384)
Spring 2015 – Foundations in Biochemistry (20 lecture hours)
Fall 2016 – Foundations in Biochemistry (20 lecture hours)
Summer 2017 – Metabolic Biochemistry (online)
Fall 2017 – Foundations in Biochemistry (20 lecture hours)

SELECTED PEER-REVIEWED PUBLICATIONS
CURRICULUM VITAE: Paul Myrdal, Ph.D.
Associate Professor of Pharmacy Practice and Science
College of Pharmacy, University of Arizona
myrdal@pharmacy.arizona.edu

EDUCATION
1994 Ph.D. in Pharmaceutical Chemistry, University of Arizona College of Pharmacy

EMPLOYMENT
2006-Present Associate Professor of Pharmacy Practice and Science, University of Arizona, Tucson, AZ
2000-2006 Assistant Professor of Pharmacy Practice and Science, University of Arizona, Tucson, AZ
1998-2000 Research Specialist, 3M Pharmaceuticals, St. Paul, Minnesota

TEACHING
PHSC 555: Drug Delivery Systems
Coordinator, Multiple Lectures
PHSC 602: Physiochemical Factors Influencing Drug Action
Multiple Lectures
PHSC 606: Industrial Pharmacy
Multiple Lectures

SELECTED PEER-REVIEWED PUBLICATIONS

CURRICULUM VITAE: John Regan, Ph.D.
Professor of Pharmacology and Toxicology
College of Pharmacy, University of Arizona
regan@pharmacy.arizona.edu

EDUCATION
1975 Ph.D. in Pharmaceutical Chemistry, University of Arizona College of Pharmacy

EMPLOYMENT
1999-Present Professor of Pharmacology and Toxicology, University of Arizona, Tucson, AZ
1994-1999 Associate Professor of Pharmacology and Toxicology, University of Arizona, Tucson, AZ
1989-1994 Assistant Professor of Pharmacology and Toxicology, University of Arizona, Tucson, AZ

TEACHING
Topics Taught in the Pharm.D. Professional Curriculum (PCOL871; The Science of Pharmacology)
- Receptor theory and molecular mechanisms of drug action (5 hrs)
- The fundamentals of neurotransmission & the autonomic nervous system (2 hrs)
- Drugs used for the treatment of affective and psychotic disorders (5 hrs)
- Opiate analgesics used for the treatment of moderate to severe pain (2 hrs)
- Drugs used for the treatment of chronic pain (1 hr)
- Drugs used for the treatment of migraine (1 hr)
- Properties and use of nonsteroidal anti-inflammatory drugs (NSAIDs) (1 hr)
- Drugs of abuse and the treatment of substance abuse disorders (2 hrs)
- Drugs used in the treatment of overweight and obesity (2 hrs)
- The effect of drugs on sexual function (1 hr)
- The pharmacology of diuretic agents (2 hrs)
- Drugs used for the treatment of asthma (1 hr)
- Drugs used for the treatment of glaucoma (1 hr)

Topics Taught in the Graduate Doctoral Curriculum (PCOL630; Cell Signaling)
- Receptor theory (2 hrs)
- Biochemical and molecular pharmacology of G-protein coupled receptors (7 hrs)
SELECTED PEER-REVIEWED PUBLICATIONS

CURRICULUM VITAE: Jennifer G. Schnellmann, Ph.D.
Assistant Professor of Pharmacology
College of Medicine, University of Arizona
schnittj@email.arizona.edu

EDUCATION
1999 Post-Doc, U.S. Food and Drug Agency, Division of Neurotoxicology
1997 Ph.D., University of Arkansas for Medical Sciences, Little Rock, Arkansas

EMPLOYMENT
2011-Present Associate Professor of Pharmacology, University of Arizona, Tucson, AZ
2007-2011 Coordinator of Rural Health Professions Program, College of Pharmacy, University of Arizona, Tucson, AZ
2001-2007 Assistant Professor, Senior Grant Writer, Office of Research Development, Medical University of South Carolina, Charleston, South Carolina

TEACHING (In prior position at MUSC)
SCCP 723: Pathophysiology/Pharmacology II
Developed cardiovascular pharmacology section for second year pharmacy students

SCCP 607: Drug Dosage Forms and Delivery Systems
Developed material for new curriculum; course coordinator, lecturer

SCCP 801: Clinical Toxicology
Developed and delivered first toxicology course for SCCP, course coordinator, lecturer

CHEM 583: Pathophysiology/Pharmacology II
Developed and delivered first toxicology course in the state for undergraduate science majors

SELECTED PEER-REVIEWED PUBLICATIONS

Schnellmann, JG, Distance Education: A Promise Not Kept, Times Higher Education, Edition 442, August 18 2016.

Scott, LA, Swartzentruber, DA, Davis, CA, Wahlquist, AH, Schnellmann, JG, Maddux, PT, Life Saving Performance of Patient Care Providers Utilizing a Competency-Based, Multi Actor Emergency Preparedness Training Curriculum (PDM-12-0114) Prehospital and Disaster Medicine December;28(4).

Scott LA, Haar CP, **Schnellmann JG**. Fostering Federal and Local Disaster Preparedness Partnerships: A novel use of AmeriCorps volunteers to support community-based disaster planning and training in South Carolina. The Journal of the South Carolina Medical Society;108:69-75

Memorandum

Date: August 31, 2017

To: Rick G. Schnellmann
 Dean, College of Pharmacy

From: Michael Staten
 Associate Dean for Career and Academic Services
 College of Agriculture and Life Sciences

Subj: Proposed B.Sc. In Pharmaceutical Science

CALS is pleased to offer its support for the College of Pharmacy’s new B.Sc. in Pharmaceutical Science (BSPS). We agree with you that this new degree will be a significant benefit to UA students. And, we are especially pleased to play a supporting role in the curriculum through our Microbiology course, MIC 205.

I have consulted with the unit heads for our Animal and Comparative Biomedical Sciences and Plant Sciences departments, which share the teaching load for MIC 205 (lecture and lab). The course is offered in both the Fall and Spring semesters. Both unit heads are confident that we can absorb the additional students that your new degree would generate.

Please keep us posted as to planned launch date and expected student enrollments. Best wishes for a successful launch.
Dear Dean Schnellmann:

Thank you for your request. Dean Miller and I have reviewed the new proposal for a B.Sc. in Pharmaceutical Science from the College of Pharmacy. We support this innovative program and look forward to future collaborations.

Sincerely,

Catherine O’Grady
Associate Dean for Academic Affairs and Professor of Law

cc: Marc Miller, Dean
August 21, 2017

Rick G. Schnellmann, Ph.D.
Dean, College of Pharmacy
Howard J. Schaeffer Endowed Chair
Professor of Pharmacology and Toxicology
schnell@pharmacy.arizona.edu

Dear Rick:

On behalf of the University of Arizona College of Medicine-Tucson, we are pleased to support the College of Pharmacy’s new B.Sc. in Pharmaceutical Sciences (BSPS) program.

Your vision on providing students with a solid background in the biological sciences, drug discovery and development, pharmaceutics, dosage forms, pharmacology, and toxicology is on par to having our students more marketable for entry-level positions in pharma and biotech, and for entry into professional and graduate academic programs.

I am confident the B.Sc. in Pharmaceutical Sciences will benefit the University by building upon the successes of the College's existing programs.

Please contact me at (520) 626-0998 or cairnsc@email.arizona.edu for any questions, comments or for additional information.

Sincerely,

Charles B. Cairns, MD, FACEP, FAHA
Dean
College of Medicine - Tucson
Professor of Emergency Medicine
cairnsc@email.arizona.edu
September 18, 2017

Rick G. Schnellmann, PhD
Dean, College of Pharmacy
Howard J. Schaeffer Endowed Chair
Professor of Pharmacology & Toxicology
POB 210202
CAMPUS

Dear Dean Schnellmann:

On behalf of the Mel and Enid Zuckerman College of Public Health we are writing to express our support for your proposed Bachelor’s of Science in Pharmaceutical Science (BSPS) program.

Looking over the information you provided, we should be able to accommodate your students in PHPM 310 – Health Care in the U.S. This course will be a valuable addition to the curriculum as one of the major elective courses.

Your proposed BSPS program offers wide-ranging benefits to the health sciences, and the UA Zuckerman College of Public Health is committed to providing support as indicated in the proposal. We believe this program will certainly provide an excellent foundation for students.

Sincerely,

Iman Hakim, MD, PhD, MPH
Dean and Professor
Mel & Enid Zuckerman Endowed Chair in Public Health

Daniel Derksen MD, Professor and Chair
Community, Environment & Policy Department
Walter H. Pearce Endowed Chair & Director
Arizona Center for Rural Health

c: Douglas Taren, Associate Dean for Academic Affairs
October 1, 2017

Rick G. Schnellmann, Ph.D.
Dean, College of Pharmacy
Howard J. Schaeffer Endowed Chair
Professor of Pharmacology and Toxicology
schnell@pharmacy.arizona.edu

Dear Rick:

The University of Arizona’s College of Science is pleased to support the College of Pharmacy’s new B.Sc. in Pharmaceutical Sciences (BSPS) program.

After reviewing your proposal for the BSPS curriculum, and in consultation with our department heads, we feel confident that the College of Science can provide many of the foundational courses required by the students enrolled in this program. Your vision on providing students with a solid background in the biological sciences, drug discovery and development, pharmaceutics, dosage forms, pharmacology, and toxicology is on track to having graduates more competitive for entry-level positions in pharmacology and biotech, and for entry into professional and graduate academic programs.

We offer the full and enthusiastic backing of the College of Science. Best wishes for a successful BSPS program launch.

Best Regards,

Elliott Cheu
Associate Dean and Distinguished Professor of Physics
College of Science
The University of Arizona
INDUSTRY SUPPORT LETTERS
September 29, 2017

Rick G. Schnellmann, Ph.D.
Dean, College of Pharmacy
Howard J. Schaeffer Endowed Chair
Professor of Pharmacology and Toxicology
schnell@pharmacy.arizona.edu

Dear Rick,

On behalf of Tech Launch Arizona (TLA) I am pleased to voice my support for your exciting new Bachelor’s of Science in Pharmaceutical Sciences (BSPS) proposed by the College of Pharmacy.

As you know, the field of pharmaceutical sciences, including drug development, feature significantly in University of Arizona commercialization portfolio. Through my related work with the biotech and pharmaceutical industries in Arizona and beyond, I feel strongly that the education and experience that the college will provide to its BSPS graduates will make them attractive candidates for employment in this growing Arizona business sector. I am enthusiastic about the coursework that includes important aspects of the regulatory side of drug development, including the intensified focus on data robustness and reproducibility in early-stage drug research.

Please let me know if I can help in any way with regard to the approval process. I fully endorse the establishment of this new Bachelor’s degree offering.

Sincerely,

David N. Allen, PhD
Vice President
Tech Launch Arizona
The University of Arizona
University Services Annex, Room A433 | PO Box 210300
220 W. 6th Street | Tucson, AZ 85721-0300
October 11, 2017

Rick G. Schnellmann, Ph.D.
Dean, College of Pharmacy
Howard J. Schaeffer Endowed Chair
Professor of Pharmacology and Toxicology
schnell@pharmacy.arizona.edu

Dear Rick,

I was excited to learn that the UA College of Pharmacy was developing a Bachelor's of Science curriculum in the pharmaceutical sciences and I am providing this letter in support of your program. As you know, Critical Path Institute (C-Path) is an independent, nonprofit organization with public and private philanthropic support from the Arizona community, Science Foundation Arizona, and the US Food and Drug Administration (FDA). C-Path’s mission is to catalyze the development of new approaches that advance medical innovation and regulatory science, accelerating the path to a healthier world. An international leader in forming collaborations, C-Path has established 14 global, public-private partnerships that currently include over 1,300 scientists from government and regulatory agencies, academia, patient advocacy organizations, and dozens of major pharmaceutical companies. Sustaining our effort will require well-educated, trained personnel with an understanding of the drug development and regulatory landscape.

Your proposed Bachelor's program looks like a great foundation to prepare students for entry level positions in the industry or to subsequent post-baccalaureate education leading to employment at a higher level.

I am interested in the opportunity that we have discussed for our scientists to deliver presentations to your students as well as the possibility of C-Path providing internship opportunities for advanced undergraduates.

Best wishes as your program launches.

Sincerely,

Martha A. Brumfield, Ph.D.
President and CEO
SURVEYING STUDENT INTEREST IN THE BSPS MAJOR

Students with email addresses in the Pre-Pharmacy Club list-serv were surveyed over a period of two days in October 2017. The survey provided a synopsis of the proposed program and curriculum, followed by branching questions designed to stratify participants into students who were actively in the process of evaluating/selecting majors (we assume mostly freshman and sophomore undergraduates), and participants who were not actively in that process (we assume a combination of current undergraduates who are in their selected major, together with recent alumni for whom the email address is still correct). The survey scheme and text is included on the following page.

There were 47 students who indicated that they were actively evaluating majors and were presented with the following question:

If a University of Arizona Bachelor of Science major in Pharmaceutical Sciences (BSPS) becomes available, would you be seriously interested in the BSPS as your major?

RESPONSE: Yes: 44 (93.6%) No: 3 (6.4%)

The 100 students who indicated that they were not actively evaluating majors were presented with the following question:

If a University of Arizona Bachelor of Science major in Pharmaceutical Sciences (BSPS) was available when you were evaluating possible majors, would you have been seriously interested in the BSPS as your major?

RESPONSE: Yes: 92 (92.0%) No: 8 (8.0%)

We appreciate the limitations of surveying students in this way, but student response suggests an interest level in this major that is consistent with a sustainable program in which students have interest.
Are you currently enrolled as a UA undergraduate?

If a University of Arizona Bachelor of Science major in Pharmaceutical Sciences (BSPS) was available when you were evaluating possible majors, would you have been seriously interested in the BSPS as your major?

Are you currently evaluating majors at U.A. along the path to selecting one?

If a University of Arizona Bachelor of Science major in Pharmaceutical Sciences (BSPS) becomes available, would you be seriously interested in the BSPS as your major?
BUDGET PROJECTION FORM
METRICS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net increase in annual college enrollment UG</td>
<td>30</td>
<td>85</td>
<td>110</td>
</tr>
<tr>
<td>Net increase in college SCH UG</td>
<td>600</td>
<td>1,525</td>
<td>1,850</td>
</tr>
<tr>
<td>Number of enrollments being charged a Program Fee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Sponsored Activity (MTDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Faculty FTE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUNDING SOURCES

Continuing Sources
- UG RCM Revenue (net of cost allocation): - 170,987 453,326
- Grad RCM Revenue (net of cost allocation)
- Program Fee RCM Revenue (net of cost allocation)
- F and A Revenues (net of cost allocations)
- UA Online Revenues
- Reallocation from existing College funds (attach description): 101,250
- Other Items (attach description)

Total Continuing
- $101,250

One-time Sources
- College fund balances
- Institutional Strategic Investment
- Gift Funding
- Other Items (attach description)

Total One-time
- $-

TOTAL SOURCES
- $101,250

EXPENDITURE ITEMS

Continuing Expenditures
- Faculty (Director of Undergraduate Academics stipend): 10,000 10,000 10,000
- Other Personnel (Program Coord & Advisor): 65,000 65,000 85,000
- Employee Related Expense: 26,250 26,250 33,250
- Graduate Assistantships
- Other Graduate Aid
- Operations (materials, supplies, phones, etc.)
- Additional Space Cost
- Other Items (attach description)

Total Continuing
- $101,250

One-time Expenditures
- Construction or Renovation
- Start-up Equipment
- Replace Equipment
- Library Resources
- Other Items (attach description)

Total One-time
- $-

TOTAL EXPENDITURES
- $101,250

Net Projected Fiscal Effect
- $- 69,737 325,076

PROJECTED BUDGET ASSUMPTIONS

30 students start the program as juniors who have already completed most of their general education courses and want to switch their major to Pharmacy when they hear about this new degree program

25 students are retained from FY19 they will graduate in FY20. 60 new juniors declare a Pharmacy major in FY20

***50 students are retained from FY20, they will graduate in FY21. 60 new juniors declare a Pharmacy major in FY21**

Year 1: 1.0 FTE Program Coordinator and 0.50 FTE Advisor
Year 2: 1.0 FTE Program Coordinator and 0.50 FTE Advisor
Year 3: 1.0 FTE Program Coordinator and 1.0 FTE Advisor